Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Diana Filipa Guimarães

2025

From waste to resource: LIBS methodology development for rapid quality assessment of recycled wood

Autores
Capela, D; Pessanha, S; Lopes, T; Cavaco, R; Teixeira, J; Ferreira, MFS; Magalhaes, P; Jorge, PAS; Silva, NA; Guimaraes, D;

Publicação
JOURNAL OF HAZARDOUS MATERIALS

Abstract
Management and reuse of wood waste can be a challenging process due to the frequent presence of hazardous contaminants. Conventional detection methods are often limited by the need for excessive sample preparation and lengthy and expensive analysis. Laser-induced Breakdown Spectroscopy (LIBS) is a rapid and micro- destructive technique that can be a promising alternative, providing in-situ and real-time analysis, with minimal to no sample preparation required. In this study, LIBS imaging was used to analyze wood waste samples to determine the presence of contaminants such as As, Ba, Cd, Cr, Cu, Hg, Pb, Sb, and Ti. For this analysis, a methodology based on detecting three lines per element was developed, offering a screening method that can be easily adapted to perform qualitative analysis in industrial contexts with high throughput operations. For the LIBS experimental lines selection, control and reference samples, and a pilot set of 10 wood wastes were analysed. Results were validated by two different X-ray Fluorescence (XRF) systems, an imaging XRF and a handheld XRF, that provided spatial elemental information and spectral information, respectively. The results obtained highlighted LIBS ability to detect highly contaminated samples and the importance of using a 3-line criteria to mitigate spectral interferences and discard outliers. To increase the dataset, a LIBS large-scale study was performed using 100 samples. These results were only corroborated by the XRF-handheld system, as it provides a faster alternative. In particular cases, ICP-MS analysis was also performed. The success rates achieved, mostly above 88 %, confirm the capability of LIBS to perform this analysis, contributing to more sustainable waste management practices and facilitating the quick identifi- cation and remediation of contaminated materials.

2025

Beyond Human Vision: Unlocking the Potential of Augmented Reality for Spectral Imaging

Autores
Cavaco, R; Lopes, T; Capela, D; Guimaraes, D; Jorge, PAS; Silva, NA;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Spectral imaging is a broad term that refers to the use of a spectroscopy technique to analyze sample surfaces, collecting and representing spatially referenced signals. Depending on the technique utilized, it allows the user to reveal features and properties of objects that are invisible to the human eye, such as chemical or molecular composition. However, the interpretability and interaction with the results are often limited to screen visualization of two-dimensional representations. To surpass such limitations, augmented reality emerges as a promising technology, assisted by recent developments in the integration of spectral imaging datasets onto three-dimensional models. Building on this context, this work explores the integration of spectral imaging with augmented reality, aiming to create an immersive toolset to increase the interpretability and interactivity of the results of spectral imaging analysis. The procedure follows a two-step approach, starting from the integration of spectral maps onto a three-dimensional models, and proceeding with the development of an interactive interface to allow immersive visualization and interaction with the results. The approach and tool developed present the opportunity for a user-centric extension of reality, enabling more intuitive and comprehensive analyses with the potential to drive advancements in various research domains.

2025

K-Feldspar Geochemistry as an Indicator of Lithium Mineralization in the Barroso-Alvão Aplite-Pegmatite Field, Northern Portugal

Autores
Filipa Dias; Ricardo Ribeiro; Filipe Gonçalves; Alexandre Lima; Encarnación Roda-Robles; Tânia Martins; Diana Guimarães;

Publicação
The Canadian Journal of Mineralogy and Petrology

Abstract
Abstract Inductively coupled plasma-mass spectrometry analysis was conducted to examine the geochemical composition of K-feldspars from various aplite-pegmatites in the Barroso-Alvão field, focusing on the differences between Li-rich and Li-barren aplite-pegmatites. The study revealed significant variations in the concentrations of minor and trace elements (Rb, Tl, Li, Ga, Pb, Cs, Ba, Be, Ta, and Sn) present in the K-feldspars of Li-barren, spodumene-rich, and petalite-rich aplite-pegmatites. The data also indicate a geographical trend in both mineralogy and geochemistry across the aplite-pegmatites of the Barroso-Alvão field. Li-barren aplite-pegmatites are more concentrated in the southeast, spodumene-rich dominate the center, and petalite-rich varieties are more common in the northwest. Additionally, portable X-ray fluorescence analysis was performed on the crystals of the same samples to evaluate the feasibility of in situ geochemical analysis of K-feldspars, aiming to determine whether an aplite-pegmatite can be quickly identified as Li-rich. This approach seeks to provide a rapid field assessment of whether an aplite-pegmatite justifies further exploration for Li mining. Notably, the trace amounts of Li, Sn, P, and Ta found in K-feldspars are likely due to mineral inclusions of spodumene, cassiterite, apatite, and columbite–tantalite minerals, as observed petrographically in one of these Li-rich aplite-pegmatites.

2025

Fiber Laser LIBS as a Sensing Tool for Chemical Mapping of Heritage Tiles

Autores
Capela, D; Manso, M; Lopes, T; Cavaco, R; Teixeira, J; Jorge, PAS; Silva, NA; Guimaraes, D;

Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS

Abstract
Heritage preservation requires innovative sensing technologies to analyze their chemical composition while minimizing damage. This study introduces a Laser-induced Breakdown Spectroscopy (LIBS) system featuring a fiber laser source and optical fiber-based collection system for the analysis of heritage ceramics. Comparative experiments with a conventional Nd:YAG laser LIBS system highlight the advantages and trade-offs of the fiber laser system in terms of ablation capability, spectral mapping, and depth profiling. Results were validated against X-ray Fluorescence (XRF). Experiments demonstrate minimal surface alteration and high-quality spectral data for elements such as Pb, Fe, Zn, Sb, Mn, Ti Na, Ba and Ca. The compact design and good results position this system as a transformative tool for heritage conservation.

2025

Laser-Induced Breakdown Spectroscopy for surface analysis of solid-state anode-less battery

Autores
Capela, D; Baptista, MC; Gomes, BM; Jorge, PAS; Silva, NA; Braga, MH; Guimaraes, D;

Publicação
JOURNAL OF POWER SOURCES

Abstract
Solid-state batteries are prominent in today's research landscape due to their advantages in capacity and safety. This work explores anode-less all-solid-state batteries, a configuration with industrial benefits as it avoids handling alkali metal anodes, albeit with room for improvement. To elucidate the intricacies of these batteries, Laser-Induced Breakdown Spectroscopy (LIBS) served as a pivotal analytical tool, primarily focusing on the negative current collector surface where Li+ nucleation occurs from the Li-rich electrolyte. The use of a fiber-laser for breakdown spectroscopy offers advantages over conventional lasers by producing high beam quality, enabling minimal spot size, and ensuring excellent spatial resolution. LIBS is an asset to verify Li presence, discerning its source, assessing nucleation and distinguishing it from electrolyte-derived Li. For instance, in this work utilizing Li2.99Ba0.005ClO as the electrolyte, LIBS is crucial to elucidate the relationship between Li and other elements like Cl, Zn, or Fe, shedding light on key battery performance aspects. LIBS demonstrated a high potential for verifying in situ Li metal nucleation in anode-less cells. This study highlights its effectiveness in conceptual and product development and advanced quality testing. The application of a clustering method enhanced result interpretability and the distinction between electrolyte and in situ anode regions.

  • 7
  • 7