Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Cláudia Daniela Rocha

2024

Enhancing Smart Manufacturing Systems: A Digital Twin Approach Employing Simulation, Flexible Robots and Additive Manufacturing Technologies

Autores
Santos, R; Rocha, C; Dias, R; Quintas, J;

Publicação
SIMULATION FOR A SUSTAINABLE FUTURE, PT 1, EUROSIM 2023

Abstract
A new generation of manufacturing systems is emerging through the adoption of new policies to overcome future crises highlighted by constant social, environmental, and economic concerns. The rise of so-called smart manufacturing is noticeable. However, new risks to humankind are being introduced, and, more than ever, science and technology are required to guarantee the future sustainability and resilience of our manufacturing systems. This research presents a Digital Twin approach resorting to simulation models with embedded intelligence to transform efficient manufacturing systems and react to complex and unpredictable circumstances. The methodology covers production scheduling incorporating flexible robots, internal logistics supervision contemplating planning and control of mobile robots, and capacity management. The method demonstrates the potential of integrating Additive Manufacturing technologies to quickly react to production needs. The developed strategy was enforced and assessed in an industrial experiment, exhibiting its robustness and promising application. The attained results were very encouraging, highlighting its potential extension to more complex industrial systems.

2025

Automated optical system for quality inspection on reflective parts

Autores
Nascimento, R; Rocha, CD; Gonzalez, DG; Silva, T; Moreira, R; Silva, MF; Filipe, V; Rocha, LF;

Publicação
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Abstract
The growing demand for high-quality components in various industries, particularly in the automotive sector, requires advanced and reliable inspection methods to maintain competitive standards and support innovation. Manual quality inspection tasks are often inefficient and prone to errors due to their repetitive nature and subjectivity, which can lead to attention lapses and operator fatigue. The inspection of reflective aluminum parts presents additional challenges, as uncontrolled reflections and glare can obscure defects and reduce the reliability of conventional vision-based methods. Addressing these challenges requires optimized illumination strategies and robust image processing techniques to enhance defect visibility. This work presents the development of an automated optical inspection system for reflective parts, focusing on components made of high-pressure diecast aluminum used in the automotive industry. The reflective nature of these parts introduces challenges for defect detection, requiring optimized illumination and imaging methods. The system applies deep learning algorithms and uses dome light to achieve uniform illumination, enabling the detection of small defects on reflective surfaces. A collaborative robotic manipulator equipped with a gripper handles the parts during inspection, ensuring precise positioning and repeatability, which improves both the efficiency and effectiveness of the inspection process. A flow execution-based software platform integrates all system components, enabling seamless operation. The system was evaluated with Schmidt Light Metal Group using three custom datasets to detect surface porosities and inner wall defects post-machining. For surface porosity detection, YOLOv8-Mosaic, trained with cropped images to reduce background noise, achieved a recall value of 84.71% and was selected for implementation. Additionally, an endoscopic camera was used in a preliminary study to detect defects within the inner walls of holes. The industrial trials produced promising results, demonstrating the feasibility of implementing a vision-based automated inspection system in various industries. The system improves inspection accuracy and efficiency while reducing material waste and operator fatigue.

2025

Quality Inspection in Casting Aluminum Parts: A Machine Vision System for Filings Detection and Hole Inspection

Autores
Nascimento, R; Ferreira, T; Rocha, CD; Filipe, V; Silva, MF; Veiga, G; Rocha, LF;

Publicação
J. Intell. Robotic Syst.

Abstract
Quality inspection inspection systems are critical for maintaining product integrity. Being a repetitive task, when performed by operators only, it can be slow and error-prone. This paper introduces an automated inspection system for quality assessment in casting aluminum parts resorting to a robotic system. The method comprises two processes: filing detection and hole inspection. For filing detection, five deep learning modes were trained. These models include an object detector and four instance segmentation models: YOLOv8, YOLOv8n-seg, YOLOv8s-seg, YOLOv8m-seg, and Mask R-CNN, respectively. Among these, YOLOv8s-seg exhibited the best overall performance, achieving a recall rate of 98.10%, critical for minimizing false negatives and yielding the best overall results. Alongside, the system inspects holes, utilizing image processing techniques like template-matching and blob detection, achieving a 97.30% accuracy and a 2.67% Percentage of Wrong Classifications. The system improves inspection precision and efficiency while supporting sustainability and ergonomic standards, reducing material waste and reducing operator fatigue. © The Author(s) 2025.

2025

From Competition to Classroom: A Hands-on Approach to Robotics Learning

Autores
Lopes, MS; Ribeiro, JD; Moreira, AP; Rocha, CD; Martins, JG; Sarmento, JM; Carvalho, JP; Costa, PG; Sousa, RB;

Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Robotics education plays a crucial role in developing STEM skills. However, university-level courses often emphasize theoretical learning, which can lead to decreased student engagement and motivation. In this paper, we tackle the challenge of providing hands-on robotics experience in higher education by adapting a mobile robot originally designed for competitions to be used in laboratory classes. Our approach integrates real-world robot operation into coursework, bridging the gap between simulation and physical implementation while maintaining accessibility. The robot's software is developed using ROS, and its effectiveness is assessed through student surveys. The results indicate that the platform increases student engagement and interest in robotics topics. Furthermore, feedback from teachers is also collected and confirmed that the platform boosts students' confidence and understanding of robotics.

2025

Post-stroke upper limb rehabilitation: clinical practices, compensatory movements, assessment, and trends

Autores
Rocha, CD; Carneiro, I; Torres, M; Oliveira, HP; Solteiro Pires, EJ; Silva, MF;

Publicação
Progress in Biomedical Engineering

Abstract
Abstract Stroke, a vascular disorder affecting the nervous system, is the third-leading cause of death and disability combined worldwide. One in every four people aged 25 and older will face the consequences of this condition, which typically causes loss of limb function, among other disabilities. The proposed review analyzes the mechanisms of stroke and their influence on the disease outcome, highlighting the critical role of rehabilitation in promoting recovery of the upper limb (UL) and enhancing the quality of life of stroke survivors. Common outcome measures and the specific targeted UL features are described, along with emerging supplementary therapies found in the literature. Stroke survivors often develop compensatory strategies to cope with limitations in UL function, which must be detected and corrected during rehabilitation to facilitate long-term recovery. Recent research on the automated detection of compensatory movements has explored pressure, wearable, marker-based motion capture systems, and vision sensors. Although current approaches have certain limitations, they establish a strong foundation for future innovations in post-stroke UL rehabilitation, promoting a more effective recovery.

  • 3
  • 3