Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Susana Alexandra Barbosa

2022

Precipitation-driven gamma radiation enhancement over the Atlantic Ocean

Autores
Barbosa, SM; Dias, N; Almeida, C; Silva, GA; Ferreira, A; Camilo, A; Silva, E;

Publicação

Abstract

2025

Recent decoupling of global mean sea level rise from decadal scale climate variability

Autores
Donner, RV; Barbosa, SM;

Publicação

Abstract

2025

Improving GHG emissions estimates and multidisciplinary climate research using nuclear observations: the NuClim project

Autores
Barbosa, S; Chambers, S;

Publicação

Abstract
Radon (Rn-222) is a unique atmospheric tracer, since it is an inert gaseous radionuclide with a predominantly terrestrial source and a short half-life (3.8232 (8) d), enabling quantification of the relative degree of recent (< 21 d) terrestrial influences on marine air masses. High quality measurements of atmospheric radon activity concentration in remote oceanic locations enable the most accurate identification of baseline conditions. Observations of GHGs under baseline conditions, representative of hemispheric background values, are essential to characterise long-term changes in hemispheric-mean GHG concentrations, differentiate between natural and anthropogenic GHG sources, and improve understanding of the global carbon budget.The EU-funded project NuClim (Nuclear observations to improve Climate research and GHG emission estimates) will establish world-leading high-quality atmospheric measurements of radon activity concentration and of selected GHG concentrations (CO2, and CH4) at a remote oceanic location, the Eastern North Atlantic (ENA) facility, managed by the Atmospheric Radiation Measurement (ARM) programme (Office of Science from the U.S. Department of Energy), located on Graciosa Island (Azores archipelago), near the middle of the north Atlantic Ocean. These observations will provide an accurate, time-varying atmospheric baseline reference for European greenhouse gas (GHG) levels, enabling a clearer distinction between anthropogenic emissions and slowly changing background levels. NuClim will also enhance measurement of atmospheric radon activity concentration at the Mace Head Station, allowing the identification of latitudinal gradients in baseline atmospheric composition, and supporting the evaluation of the performance of GHG mitigation measures for countries in the northern hemisphere.The high-quality nuclear and GHG observations from NuClim, and the resulting classification of terrestrial influences on marine air masses, will assist diverse climate and environmental studies, including the study of pollution events, characterisation of marine boundary layer clouds and aerosols, and exploration of the impact of natural planktonic communities on GHG emissions. This poster presents an overview of NuClim, outlines the project objectives and methodologies, and summarises the relevant data products that will be made available to the climate community.Project NuClim received funding from the EURATOM research and training program 2023-2025 under Grant Agreement No 101166515.

2025

Using nuclear observations to improve climate research and GHG emission estimates – the NuClim project

Autores
Barbosa, S; Chambers, S; Pawlak, W; Fortuniak, K; Paatero, J; Röttger, A; Röttger, S; Chen, X; Melintescu, A; Martin, D; Kikaj, D; Wenger, A; Stanley, K; Ramos, JB; Hatakka, J; Anttila, T; Aaltonen, H; Dias, N; Silva, ME; Castro, J; Lappalainen, HK; Azevedo, E; Kulmala, M;

Publicação
EPJ Nuclear Sciences & Technologies

Abstract
Project NuClim (Nuclear observations to improve Climate research and GHG emission estimates) aims to use high-quality measurements of atmospheric radon activity concentration and ambient radioactivity to advance climate science and improve radiation protection and nuclear surveillance capabilities. It is supported by new metrological capabilities developed in the EMPIR project 19ENV01 traceRadon. This work reviews the scientific objectives of project NuClim in terms of both climate science and radiological protection, and provides an overview of the NuClim field campaign and the various nuclear measurements being implemented within the scope of the project.

  • 15
  • 15