Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Vera Miguéis

2024

A Systematic Review on Responsible Multimodal Sentiment Analysis in Marketing Applications

Autores
César, I; Pereira, I; Rodrigues, F; Miguéis, VL; Nicola, S; Madureira, A; Reis, JL; Dos Santos, JPM; De Oliveira, DA;

Publicação
IEEE ACCESS

Abstract
The intrinsic challenges of contemporary marketing encourage discovering new approaches to engage and retain customers effectively. As the main channels of interactions between customers and brands pivot between the physical and the digital world, analyzing the outcome behavioral patterns must be achieved dynamically with the stimulus performed in both poles. This systematic review investigates the collaborative impact of adopting multidisciplinary fields of Affective Computing to evaluate current marketing strategies, upholding the process of using multimodal information from consumers to perform and integrate Sentiment Analysis tasks. The adjusted representation of modalities such as textual, visual, audio, or even psychological indicators enables prospecting a more precise assessment of the advantages and disadvantages of the proposed technique, glimpsing future applications of Multimodal Artificial Intelligence in Marketing. Embracing the Preferred Reporting Items for Systematic Reviews and Meta-Analysis as the research method to be applied, this article warrants a rigorous and sequential identification and interpretation of the synergies between the latest studies about affective computing and marketing. Furthermore, the robustness of the procedure is deepened in knowledge-gathering concerning the current state of Affective Computing in the Marketing area, their technical practices, ethical and legal considerations, and the potential upcoming applications, anticipating insights for the ongoing work of marketers and researchers.

2025

Predicting demand for new products in fashion retailing using censored data

Autores
Sousa, MS; Loureiro, ALD; Miguéis, VL;

Publicação
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
In today's highly competitive fashion retail market, it is crucial to have accurate demand forecasting systems, namely for new products. Many experts have used machine learning techniques to forecast product sales. However, sales that do not happen due to lack of product availability are often ignored, resulting in censored demand and service levels that are lower than expected. Motivated by the relevance of this issue, we developed a two-stage approach to forecast the demand for new products in the fashion retail industry. In the first stage, we compared four methods of transforming historical sales into historical demand for products already commercialized. Three methods used sales-weighted averages to estimate demand on the days with stock-outs, while the fourth method employed an Expectation-Maximization (EM) algorithm to account for potential substitute products affected by stock-outs of preferred products. We then evaluated the performance of these methods and selected the most accurate one for calculating the primary demand for these historical products. In the second stage, we predicted the demand for the products of the following collection using Random Forest, Deep Neural Networks, and Support Vector Regression algorithms. In addition, we applied a model that consisted of weighting the demands previously calculated for the products of past collections that were most similar to the new products. We validated the proposed methodology using a European fashion retailer case study. The results revealed that the method using the Expectation-Maximization algorithm had the highest potential, followed by the Random Forest algorithm. We believe that this approach will lead to more assertive and better-aligned decisions in production management.

2025

Aligning priorities: A Comparative analysis of scientific and policy perspectives on municipal solid waste management

Autores
Rodrigues, M; Antunes, JA; Migueis, V;

Publicação
WASTE MANAGEMENT

Abstract
Municipal solid waste (MSW) management has become a critical issue today, posing substantial economic, environmental, and social challenges. Identifying and analyzing dominant themes in this field is essential for advancing research and policies towards sustainable MSW management practices. This study aims to explore the key issues related to MSW management that have been addressed by both the scientific community and policymakers through funded projects. By doing so, the study seeks to guide the scientific community as a knowledge producer and the EU as a key funder. Two Latent Dirichlet Allocation (LDA) models were applied to analyze the themes from two corpora: one representing scientific literature and another focusing on EU-funded projects. Additionally, this analysis was complemented by a quantitative estimation of the similarity between the two corpora, providing a measure of alignment between the scientific community and policymakers. The results generally indicate that the two spheres are aligned and highlight the diversity of topics explored by the scientific community. Nevertheless, it is concluded that there are opportunities for further research on specific topics, such as leaching and the extraction of heavy metals. Additionally, the popularity of topics identified in European Union-funded projects has fluctuated considerably over time, focusing primarily on waste management rather than its prevention. In light of these findings, waste prevention emerges as a promising avenue for future EU-funded research initiatives.

2024

A text-mining approach to understand the barriers and requirements for truck platooning deployment

Autores
Rhaydrick Sandokhan P. T. Tavares; Sérgio Pedro Duarte; Vera Miguéis; António Lobo;

Publicação

Abstract

2025

Improving customer retention in taxi industry using travel data analytics: A churn prediction study

Autores
Loureiro, ALD; Miguéis, VL; Costa, Á; Ferreira, M;

Publicação
Journal of Retailing and Consumer Services

Abstract
The retention of public transport users is widely acknowledged as a paramount challenge in the path towards the establishment of more sustainable cities and societies. In this setting, in which no contractual relationship with customers exists, an early and accurate prediction of whether a customer will remain with the company or leave, assumes great significance for businesses to develop effective retention strategies. This work focuses on this topic by identifying potential churners based on their past travel behavior. To achieve this, we developed a set of classification models using various machine learning techniques. These models were then employed as base learners within a stacking ensemble. All classifiers were developed with a profit-driven approach, optimizing for expected maximum profit. Finally, we calculated Shapley Additive Explanation values to enhance the interpretability of the proposed classifiers. The performance of the predictive models was evaluated using the data of taxi services recorded in a Portuguese city for 52 months. A broad range of predictors is proposed, including recency and frequency measures of taxi usage as well as others related to customers' satisfaction level. The predictive power of the models was also assessed for specific proportions of higher risk customers. All models have shown the capability to identify churners accurately. This study innovates in evaluating the one-to-one service provider company-customer relationship in the context of taxi industry. Retention actions to promote customers loyalty and enhance retention are also suggested. © 2025 The Author(s)

2025

Different energy poverty issues, different engagement behaviors? An empirical analysis of citizen groups in Europe

Autores
Grozea-Banica, B; Miguéis, V; Patrício, L;

Publicação
ENERGY RESEARCH & SOCIAL SCIENCE

Abstract
Engagement in the ongoing energy transition is particularly challenging for energy-poor citizens. As such, there is a pressing need for a better understanding of their experiences and for strategies that enable their engagement. In this study, we identify different groups of citizens based on their energy poverty issues and examine their engagement behaviors (seeking information, proactive managing, sharing feedback, helping others, and advocating). Using cluster analysis and multiple correspondence analysis, we analyzed a sample of 915 citizens from eight European cities participating in a Horizon2020 EU project (Alkmaar-NL, Bari-IT, Celje-SI, Evora-PT, Granada-ES, Hvidovre-DK, Ioannina-GR, & Uacute;jpest-HU). Several groups of citizens reported either multiple energy issues, a single issue (energy bills, insulation, cooling, heating), or no issues, and the statistical tests showed significant differences across these groups in terms of engagement in seeking information, helping, and advocating. Moreover, we identified that certain groups tend to have specific levels of engagement (high, medium, low) and that sharing feedback generally has a low level of engagement. Overall, this study provides empirical insights into how energy-poor citizens exercise agency through engagement behaviors and offers actionable insights for designing measures to mitigate energy poverty in complementarity with technical and economical solutions.

  • 9
  • 9