Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Bruno Miguel Veloso

2025

Interpretable Predictive Maintenance: Combining Anomaly Detection with Quantitative Root Cause Analysis

Autores
Barbosa, I; Gama, J; Veloso, B;

Publicação
Progress in Artificial Intelligence - 24th EPIA Conference on Artificial Intelligence, EPIA 2025, Faro, Portugal, October 1-3, 2025, Proceedings, Part II

Abstract

2025

An Explainable Machine Learning Framework for Railway Predictive Maintenance using Data Streams from the Metro Operator of Portugal

Autores
Méndez, SG; Arriba Pérez, Fd; Leal, F; Veloso, B; Malheiro, B; Burguillo Rial, JC;

Publicação
CoRR

Abstract

2026

Fish swarm parameter self-tuning for data streams

Autores
Veloso, BM; Neto, HA; Buarque, F; Gama, MP;

Publicação
Data Mining and Knowledge Discovery

Abstract
Hyper-parameter optimization in machine learning models is critical for achieving peak performance. Over the past few years, numerous researchers have worked on this optimization challenge. They primarily focused on batch learning tasks where data distributions remain relatively unchanged. However, addressing the properties of data streams poses a substantial challenge. With the rapid evolution of technology, the demand for sophisticated techniques to handle dynamic data streams is becoming increasingly urgent. This paper introduces a novel adaptation of the Fish School Search (FSS) Algorithm for online hyper-parameter optimization, the FSS-SPT. The FSS-SPT is a solution designed explicitly for the dynamic context of data streams. One fundamental property of the FSS-SPT is that it can change between exploration and exploitation modes to cope with the concept drift and converge to reasonable solutions. Our experiments on different datasets provide compelling evidence of the superior performance of our proposed methodology, the FSS-SPT. It outperformed existing algorithms in two machine learning tasks, demonstrating its potential for practical application. © The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025.

2026

Building of transformer-based RUL predictors supported by explainability techniques: Application on real industrial datasets

Autores
Dintén, R; Zorrilla, M; Veloso, B; Gama, J;

Publicação
INFORMATION FUSION

Abstract
One of the key aspects of Industry 4.0 is using intelligent systems to optimize manufacturing processes by improving productivity and reducing costs. These systems have greatly impacted in different areas, such as demand prediction and quality assessment. However, the prognostics and health management of industrial equipment is one of the areas with greater potential. This paper presents a comparative analysis of deep learning architectures applied to the prediction of the remaining useful life (RUL) on public real industrial datasets. The analysis includes some of the most commonly employed recurrent neural network variations and a novel approach based on a hybrid architecture using transformers. Moreover, we apply explainability techniques to provide comprehensive insights into the model's decision-making process. The contributions of the work are: (1) a novel transformer-based architecture for RUL prediction that outperforms traditional recurrent neural networks; (2) a detailed description of the design strategies used to construct the models on two under-explored datasets; (3) the use of explainability techniques to understand the feature importance and to explain the model's prediction and (4) making models built for reproducibility available to other researchers.

  • 16
  • 16