2025
Autores
Blomme, RF; Domissy, Z; Dylik, Z; Hidding, T; Röhe, A; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;
Publicação
FUTUREPROOFING ENGINEERING EDUCATION FOR GLOBAL RESPONSIBILITY, ICL2024, VOL 3
Abstract
The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) is a capstone engineering design program where students, organised in multidisciplinary and multicultural teams, create a solution for a proposed problem, bearing in mind ethical, sustainability and market concerns. The project proposals are usually aligned with the United Nations Sustainable Development Goals (SDG). New sustainable food production methods are essential to cope with the continuous population growth and aligned with SDG2 and SDG12. In this context, this paper describes the research and work done by a team of Erasmus students enrolled in EPS@ISEP during the spring of 2022. Since sustainable algae farming can be a suitable source of food, the team's goal was the design and develop a proof-of-concept prototype, named GREEN center dot flow, of a symbiotic aquaponic system to farm algae and fish. The smart GREEN center dot flow concept comprises a modular structure and an app for control and supervision. The proposed design was driven by state-of-the-art research, targeted to a specific market niche based on a market analysis, and considering sustainability and ethics concerns, all of which are described in this manuscript. A proof-of-concept prototype was built and tested to verify that it worked as intended.
2025
Autores
Högkvist, C; Haack, F; de Vries, J; Durnwalder, M; Geirnaert, M; Cordier, S; Duarte, J; Malheiro, B; Ribeiro, C; Justo, J; Silva, F; Ferreira, P; Guedes, P;
Publicação
Lecture Notes in Educational Technology
Abstract
Pedestrian safety is a pressing subject in urban areas. The disorderly sharing of streets and roads between pedestrians and vehicles leads to potentially serious accidents for pedestrians. This student project aims to tackle the issue by placing an interactive gaming device at traffic lights. SMASHY by Stempe Safety offers pedestrians an amusing and active way to discourage jaywalking. The multipurpose solution features a smashing game with buttons on one side and a screen displaying useful information on the other side. While the traffic light remains red for pedestrians, the module buttons light up and the players can start smashing the buttons as fast as possible, until the light turns green and consequently, the game ends. Ultimately, the modules are connected to an app where, if desired by the player, scores can be tracked and difficulty can vary based on user performance. Multiple modules can be placed around the city and the app will track player scores by location. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
2025
Autores
Stapel, N; Lupu, R; Kötting, N; Heller, M; Sorribas, V; Boulay, H; Duarte, J; Malheiro, B; Ribeiro, C; Justo, J; Silva, F; Ferreira, P; Guedes, P;
Publicação
Lecture Notes in Educational Technology
Abstract
CoffeeMush is an innovative and sustainable project developed as part of the European Project Semester (EPS) at ISEP in 2024. This student project aims to tackle waste management environmental problems by turning coffee waste into mushrooms, a valuable food source. CoffeeMush consists of a smart device providing optimal conditions for mushroom cultivation, complemented by a user-friendly Android application for remote monitoring and control. The design was guided by ethical, sustainability, market and technical considerations. The paper describes the theoretical background of the project, the technical design, and the prototype development and testing. The results show the feasibility of CoffeeMush as a practical and environmentally friendly solution for urban mushroom cultivation, and its impact on sustainable food production and waste reduction. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
2025
Autores
Faber, A; Torres, Â; Boucher, E; Ljungkvist, F; Hauspie, L; Spaas, S; Duarte, J; Malheiro, B; Ribeiro, C; Justo, J; Silva, F; Ferreira, P; Guedes, P;
Publicação
Lecture Notes in Educational Technology
Abstract
In the spring of 2023, a team of European Project Semester (EPS) students enrolled at the Instituto Superior de Engenharia do Porto (ISEP) chose to foster socialisation in urban spaces. Public spaces are ideal sites to promote social interaction and community involvement. The aim of this project is then to use such places to divert attention from smartphones by promoting physical social interaction. In recent years, the combination of interactive games and technology has emerged as a potential strategy to increase the use and allure of public areas. The proposed solution, named Shift it, is a puzzle game that combines technology with old school gaming, providing a fun and unique socialising experience. The game, to be installed in public areas, has as key features inclusiveness (invites all people to play), fun (creates a healthy competitive setup) and empathy (creates puzzles by taking and scrambling user pictures). This paper presents the proposed design, which was based on state-of-the-art, ethics, market and sustainability analyses, followed by the development and testing of a proof-of-concept prototype. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
2025
Autores
de Arriba-Pérez, F; García-Méndez, S; Leal, F; Malheiro, B; Burguillo, JC;
Publicação
INTEGRATED COMPUTER-AIDED ENGINEERING
Abstract
Social media platforms, increasingly used as news sources for varied data analytics, have transformed how information is generated and disseminated. However, the unverified nature of this content raises concerns about trustworthiness and accuracy, potentially negatively impacting readers' critical judgment due to disinformation. This work aims to contribute to the automatic data quality validation field, addressing the rapid growth of online content on wiki pages. Our scalable solution includes stream-based data processing with feature engineering, feature analysis and selection, stream-based classification, and real-time explanation of prediction outcomes. The explainability dashboard is designed for the general public, who may need more specialized knowledge to interpret the model's prediction. Experimental results on two datasets attain approximately 90% values across all evaluation metrics, demonstrating robust and competitive performance compared to works in the literature. In summary, the system assists editors by reducing their effort and time in detecting disinformation.
2025
Autores
García-Méndez, S; de Arriba-Pérez, F; Leal, F; Veloso, B; Malheiro, B; Burguillo-Rial, JC;
Publicação
SCIENTIFIC REPORTS
Abstract
The public transportation sector generates large volumes of sensor data that, if analyzed adequately, can help anticipate failures and initiate maintenance actions, thereby enhancing quality and productivity. This work contributes to a real-time data-driven predictive maintenance solution for Intelligent Transportation Systems. The proposed method implements a processing pipeline comprised of sample pre-processing, incremental classification with Machine Learning models, and outcome explanation. This novel online processing pipeline has two main highlights: (i) a dedicated sample pre-processing module, which builds statistical and frequency-related features on the fly, and (ii) an explainability module. This work is the first to perform online fault prediction with natural language and visual explainability. The experiments were performed with the Metropt data set from the metro operator of Porto, Portugal. The results are above 98 % for f-measure and 99 % for accuracy. In the context of railway predictive maintenance, achieving these high values is crucial due to the practical and operational implications of accurate failure prediction. In the specific case of a high f-measure, this ensures that the system maintains an optimal balance between detecting the highest possible number of real faults and minimizing false alarms, which is crucial for maximizing service availability. Furthermore, the accuracy obtained enables reliability, directly impacting cost reduction and increased safety. The analysis demonstrates that the pipeline maintains high performance even in the presence of class imbalance and noise, and its explanations effectively reflect the decision-making process. These findings validate the methodological soundness of the approach and confirm its practical applicability for supporting proactive maintenance decisions in real-world railway operations. Therefore, by identifying the early signs of failure, this pipeline enables decision-makers to understand the underlying problems and act accordingly swiftly.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.