2024
Autores
Babo, L; Mendonca, MP; Queiros, R; Pinto, MA; Cruz, M; Mascarenhas, D;
Publicação
EEITE 2024 - Proceedings of 2024 5th International Conference in Electronic Engineering, Information Technology and Education
Abstract
An increasing number of colleges and universities are introducing Generative Artificial Intelligence (GAI) in their teaching/learning frameworks. This study examines the feedback from 152 students across Higher Education Institutions (HEIs), representing diverse scientific areas, namely Engineering, Lit-erature, Business and Accounting, Sports. It aims to explore the integration of GAI features in education and students' perception on its advantages and disadvantages. Students' top benefit was 'Personalized learning'. They also valued 'efficient content creation', and 'individualized assessment tools'. Their major concern was 'Ethical considerations', and it varied by demographic variables. Other distresses included 'Lack of control of content creation', 'over-reliance', and 'AI depersonalization', and 'decreased interpersonal engagement'. Of utmost important conclusion is that HE students agree and strongly agree that AI came to disrupt HEIs' educational process. © 2024 IEEE.
2024
Autores
Montella, R; De Vita, CG; Mellone, G; Ciricillo, T; Caramiello, D; Di Luccio, D; Kosta, S; Damasevicius, R; Maskeliunas, R; Queirós, R; Swacha, J;
Publicação
APPLIED SCIENCES-BASEL
Abstract
Featured Application The presented solution can be applied to simplify and hasten the development of gamified programming exercises conforming to the Framework for Gamified Programming Education (FGPE) standard.Abstract Skilled programmers are in high demand, and a critical obstacle to satisfying this demand is the difficulty of acquiring programming skills. This issue can be addressed with automated assessment, which gives fast feedback to students trying to code, and gamification, which motivates them to intensify their learning efforts. Although some collections of gamified programming exercises are available, producing new ones is very demanding. This paper presents GAMAI, an AI-powered exercise gamifier, enriching the Framework for Gamified Programming Education (FGPE) ecosystem. Leveraging large language models, GAMAI enables teachers to effortlessly apply storytelling to describe a gamified scenario, as GAMAI decorates natural language text with the sentences needed by OpenAI APIs to contextualize the prompt. Once a gamified scenario has been generated, GAMAI automatically produces exercise files in a FGPE-compatible format. According to the presented evaluation results, most gamified exercises generated with AI support were ready to be used, with no or minimum human effort, and were positively assessed by students. The usability of the software was also assessed as high by the users. Our research paves the way for a more efficient and interactive approach to programming education, leveraging the capabilities of advanced language models in conjunction with gamification principles.
2024
Autores
Pinto, MA; Mendonca, MP; Babo, L; Queiros, R; Cruz, M; Mascarenhas, D;
Publicação
EEITE 2024 - Proceedings of 2024 5th International Conference in Electronic Engineering, Information Technology and Education
Abstract
Higher Education Institutions (HEIs) are increasingly incorporating artificial i ntelligence (AI) into their learning setup. In this paper, we analyze the results of a survey posed to 152 Higher Education (HE) students and 136 HE educators, of different scientific b ackgrounds, to emphasize the current incorporation of AI in the teaching and learning processes. The results reveal distinct viewpoints from both parties, reflecting diversified l evels o f e xperience, presumptions, and uneasiness. Thirty two percent of the teachers, completing the survey, confirms using AI. Approximately 50% reveal they notice their students using AI to (i) automate routine tasks in or out-ofclass, including check correctness of answers, obtaining real-time feedback; (ii) personalize learning tasks, such as write essays or projects and to illustrate them, and create presentations. A smaller percentage reveals students using AI to produce video content and contrast information learned in class. Alternative means, encompassing using AI at home, to study, to gather information, to sum up ideas in texts, are identified by most teachers as being employed by their students. Students using AI outnumber the teachers, though there are significant d ifferences in some responses, when compared to the teachers' perceptions, for the sames questions. Most of the students prefer AI to study at home, to obtain information to improve or to check an answer. Then a significant number does not exploit AI either to create presentations, write an essay or project, illustrate a project, producing videos, or to contrast information obtained in classes with that collected by AI tools. Regardless of these differences, both parties agree and strongly agree (with 79% of students and 86% of teachers) that AI will affect the HEIs educational process in the future. © 2024 IEEE.
2024
Autores
Bauer, Y; Leal, JP; Queirós, R;
Publicação
5th International Computer Programming Education Conference, ICPEC 2024, June 27-28, 2024, Lisbon, Portugal
Abstract
Generative AI presents both challenges and opportunities for educators. This paper explores its potential for automating the creation of programming exercises designed for automated assessment. Traditionally, creating these exercises is a time-intensive and error-prone task that involves developing exercise statements, solutions, and test cases. This ongoing research analyzes the capabilities of the OpenAI GPT API to automatically create these components. An experiment using the OpenAI GPT API to automatically create 120 programming exercises produced interesting results, such as the difficulties encountered in generating valid JSON formats and creating matching test cases for solution code. Learning from this experiment, an enhanced feature was developed to assist teachers in creating programming exercises and was integrated into Agni, a virtual learning environment (VLE). Despite the challenges in generating entirely correct programming exercises, this approach shows potential for reducing the time required to create exercises, thus significantly aiding teachers. The evaluation of this approach, comparing the efficiency and usefulness of using the OpenAI GPT API or authoring the exercises oneself, is in progress. © Yannik Bauer, José Paulo Leal, and Ricardo Queirós;
2014
Autores
Queirós, Ricardo;
Publicação
Abstract
2015
Autores
Queirós, Ricardo; Simões, Alberto;
Publicação
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.