2024
Autores
Fonseca, NS; Soares, F; Iria, J;
Publicação
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024
Abstract
This paper proposes a planning optimization model to help distribution system operators (DSOs) decide on the most cost-effective investments to handle the wholesale market participation of distributed energy resources (DERs). Two investment options are contemplated: market redesign; and network augmentation. The market redesign is employed through a DSO framework used to coordinate the network-secure participation of DERs in wholesale markets. Network augmentation is achieved by investing in new HV/MV OLTC and MV/LV transformers. To evaluate the performance of our planning model, we used the IEEE 69-bus network with three DER aggregators operating under different DER scenarios. Our tests show that the planning problem suggests investment decisions that can help DSOs guarantee network security. Market redesign has shown to be the most cost-effective option. However, this option is not always viable, namely in scenarios where not enough DERs are available to provide network support services. In such scenarios, hybrid investment solutions are required.
2024
Autores
Coelho, A; Soares, FJ; Iria, JP;
Publicação
IEEE PES Innovative Smart Grid Technologies Europe, ISGT EUROPE 2024, Dubrovnik, Croatia, October 14-17, 2024
Abstract
As the global community transitions towards decarbonization and sustainable energy, green hydrogen is emerging as a key clean energy carrier. This paper addresses the role of hydrogen in transportation, emphasizing the European Union's additionality principle for renewable energy sources in green hydrogen production. It introduces a model for optimally designing hydrogen fueling stations, considering electrolyzers, hydrogen storage, fuel cells, PV systems, and batteries. This model also considers the participation in electricity (energy and secondary reserve), hydrogen, and oxygen markets, and it is evaluated under different additionality policy scenarios. Results indicate that stricter additionality policies reduce the internal rate of return. However, participation in secondary reserve markets significantly boosts operational revenues and compensates for higher investment costs. © 2024 IEEE.
2025
Autores
Anuradha K.B.J.; Iria J.; Mediwaththe C.P.;
Publicação
Journal of Energy Storage
Abstract
This paper proposes a multi-objective stochastic optimization framework that can be used by governments to run auctions and select the best community energy storage system (CESS) projects to support. The framework enables CESS providers and energy community members to equitably benefit from the economic value generated by CESSs. The auction accepts offers from competing CESS providers that constitute the data of the CESS location, size, install time, technology, provider, investment cost, and energy trading price. The auction is run by a government agency which selects CESS projects that maximize the economic benefits and distribute them equitably among CESS providers and community members. The multi-objective stochastic optimization accounts for the multi-year uncertainties of photovoltaic (PV) generation, real and reactive energy consumption, energy trading prices, and PV installations. We exploit the Monte Carlo simulation and scenario trees to model the aforementioned uncertainties. The K-Means clustering method is used to reduce the number of scenarios, and thereby, lessen the computational burden of the optimization problem. Our experiments on an Australian low-voltage network with a community of prosumers and consumers demonstrate that government financial support can accelerate the installation of CESSs and enhance their business viability. This can be achieved by boosting the economic benefits shared between CESS providers and communities and ensuring these benefits are distributed equitably. Also, our experiments show that the economic benefits of all stakeholders are further improved with a high growth of the number of PV installations, and a slight reduction of energy import and export prices over the planning period.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.