2018
Autores
Fernandes, C; Fonseca, L; Ferreira, F; Gago, M; Costa, L; Sousa, N; Ferreira, C; Gama, J; Erlhagen, W; Bicho, E;
Publicação
PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM)
Abstract
Differential diagnosis between Idiopathic Parkinson's disease (IPD) and Vascular Parkinsonism (VaP) is a difficult task, especially early in the disease. There is growing evidence to support the use of gait assessment in diagnosis and management of movement disorder diseases. The aim of this study is to evaluate the effectiveness of some machine learning strategies in distinguishing IPD and VaP gait. Wearable sensors positioned on both feet were used to acquire the gait data from 15 IPD, 15 VaP, and 15 healthy subjects. A comparative classification analysis was performed by applying two supervised machine learning algorithms: Multiple Layer Perceptrons (MLPs) and Deep Belief Networks (DBNs). The decisional space was composed of the gait variables, with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top-ranked in an error incremental analysis. In the classification task of characterizing parkinsonian gait by distinguishing between patients (IPD+VaP) and healthy control, from the all strides classification of the gait performed by the person, high accuracy (93% with or without MoCA) was obtained for both algorithms. In the classification task of the two groups of patients (VaP vs. IPD), DBN classifier achieved higher performance (73% with MoCA). To the best of our knowledge, this is the first study on gait classification that includes a VaP group. DBN classifiers are not frequently applied in literature to similar studies, but the results here obtained demonstrate that the use of DBN classifiers based on gait analysis is promising to be a good support to the neurologist in distinguishing VaP and IPD.
2018
Autores
Veloso, B; Gama, J; Malheiro, B; Vinagre, J;
Publicação
ECML PKDD 2018 Workshops - DMLE 2018 and IoTStream 2018, Dublin, Ireland, September 10-14, 2018, Revised Selected Papers
Abstract
E-commerce platforms explore the interaction between users and digital content – user generated streams of events – to build and maintain dynamic user preference models which are used to make mean-ingful recommendations. However, the accuracy of these incremental models is critically affected by the choice of hyper-parameters. So far, the incremental recommendation algorithms used to process data streams rely on human expertise for hyper-parameter tuning. In this work we apply our Self Hyper-Parameter Tuning (SPT) algorithm to incremental recommendation algorithms. SPT adapts the Melder-Mead optimi-sation algorithm to perform hyper-parameter tuning. First, it creates three models with random hyper-parameter values and, then, at dynamic size intervals, assesses and applies the Melder-Mead operators to update their hyper-parameters until the models converge. The main contribu-tion of this work is the adaptation of the SPT method to incremental matrix factorisation recommendation algorithms. The proposed method was evaluated with well-known recommendation data sets. The results show that SPT systematically improves data stream recommendations.
2018
Autores
Moulton, RH; Viktor, HL; Japkowicz, N; Gama, J;
Publicação
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part I
Abstract
Clustering naturally addresses many of the challenges of data streams and many data stream clustering algorithms (DSCAs) have been proposed. The literature does not, however, provide quantitative descriptions of how these algorithms behave in different circumstances. In this paper we study how the clusterings produced by different DSCAs change, relative to the ground truth, as quantitatively different types of concept drift are encountered. This paper makes two contributions to the literature. First, we propose a method for generating real-valued data streams with precise quantitative concept drift. Second, we conduct an experimental study to provide quantitative analyses of DSCA performance with synthetic real-valued data streams and show how to apply this knowledge to real world data streams. We find that large magnitude and short duration concept drifts are most challenging and that DSCAs with partitioning-based offline clustering methods are generally more robust than those with density-based offline clustering methods. Our results further indicate that increasing the number of classes present in a stream is a more challenging environment than decreasing the number of classes. Code related to this paper is available at: https://doi.org/10.5281/zenodo.1168699, https://doi.org/10.5281/zenodo.1216189, https://doi.org/10.5281/zenodo.1213802, https://doi.org/10.5281/zenodo.1304380. © Springer Nature Switzerland AG 2019.
2018
Autores
Washio, T; Gama, J; Li, Y; Parekh, R; Liu, H; Bifet, A; De Veaux, RD;
Publicação
Proceedings - 2017 International Conference on Data Science and Advanced Analytics, DSAA 2017
Abstract
2018
Autores
Gama, J;
Publicação
MATEC Web of Conferences
Abstract
2018
Autores
Li, X; Gama, J; Chen, B; Chen, S; Wang, S; Zhu, XH;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.