2019
Autores
Oliveira, J; Renna, F; Coimbra, M;
Publicação
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
Abstract
The analysis of heart sounds is a challenging task, due to the quick temporal onset between successive events and the fact that an important fraction of the information carried by phonocardiogram (PCG) signals lies in the inaudible part of the human spectrum. For these reasons, computer-aided analysis of the PCG can dramatically improve the quantity of information recovered from such signals. In this paper, a hidden semi-Markov model (HSMM) is used to automatically segment PCG signals. In the proposed models, the emission probability distributions are approximated via Gaussian mixture model (GMM) priors. The choice of GMM emission probability distributions allow to apply re-estimation routines to automatically adjust the HSMM emission probability distributions to each subject. Building on the proposed method for fine tuning emission distributions, a novel subject-driven unsupervised heart sound segmentation algorithm is proposed and validated over the publicly available PhysioNet dataset. Perhaps surprisingly, the proposed unsupervised method achieved results in line with state-of-the-art supervised approaches, when applied to long heart sounds.
2019
Autores
Oliveira, J; Renna, F; Mantadelis, T; Coimbra, M;
Publicação
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Abstract
Heart sounds are difficult to interpret due to events with very short temporal onset between them (tens of milliseconds) and dominant frequencies that are out of the human audible spectrum. Computer-assisted decision systems may help but they require robust signal processing algorithms. In this paper, we propose a new algorithm for heart sound segmentation using a hidden semi-Markov model. The proposed algorithm infers more suitable sojourn time parameters than those currently suggested by the state of the art, through a maximum likelihood approach. We test our approach over three different datasets, including the publicly available PhysioNet and Pascal datasets. We also release a pediatric dataset composed of 29 heart sounds. In contrast with any other dataset available online, the annotations of the heart sounds in the released dataset contain information about the beginning and the ending of each heart sound event. Annotations were made by two cardiopulmonologists. The proposed algorithm is compared with the current state of the art. The results show a significant increase in segmentation performance, regardless the dataset or the methodology presented. For example, when using the PhysioNet dataset to train and to evaluate the HSMMs, our algorithm achieved average an F-score of 92% compared to 89% achieved by the algorithm described in [D.B. Springer, L. Tarassenko, and G. D. Clifford, "Logistic regressionHSMM-based heart sound segmentation," IEEE Transactions on Biomedical Engineering, vol. 63, no. 4, pp. 822-832, 2016]. In this sense, the proposed approach to adapt sojourn time parameters represents an effective solution for heart sound segmentation problems, even when the training data does not perfectly express the variability of the testing data.
2019
Autores
Renna, F; Oliveira, J; Coimbra, MT;
Publicação
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Abstract
This paper studies the use of deep convolutional neural networks to segment heart sounds into their main components. The proposed methods are based on the adoption of a deep convolutional neural network architecture, which is inspired by similar approaches used for image segmentation. Different temporal modeling schemes are applied to the output of the proposed neural network, which induce the output state sequence to be consistent with the natural sequence of states within a heart sound signal (S1, systole, S2, diastole). In particular, convolutional neural networks are used in conjunction with underlying hidden Markov models and hidden semi-Markov models to infer emission distributions. The proposed approaches are tested on heart sound signals from the publicly available PhysioNet dataset, and they are shown to outperform current state-of-the-art segmentation methods by achieving an average sensitivity of 93.9 and an average positive predictive value of 94 in detecting S1 and S2 sounds.
2019
Autores
Renna, F; Illanes, A; Oliveira, J; Esmaeili, N; Friebe, M; Coimbra, MT;
Publicação
2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)
Abstract
This paper studies the use of non-invasive acoustic emission recordings for clinical device tracking. In particular, audio signals recorded at the proximal end of a needle are used to detect perforation events that occur when the needle tip crosses internal tissue layers. A comparative study is performed to assess the capacity of different features and envelopes in detecting perforation events. The results obtained from the considered experimental setup show a statistically significant correlation between the extracted envelopes and the perforation events, thus leading the way for future development of perforation detection algorithms.
2019
Autores
Simões, D; Barbosa, B; Filipe, S;
Publicação
Advances in Marketing, Customer Relationship Management, and E-Services
Abstract
No abstract available.
2019
Autores
Costa, A; Abreu, M; Barbosa, B;
Publicação
PROCEEDINGS OF THE INTERNATIONAL WORKSHOP TOURISM AND HOSPITALITY MANAGEMENT (IWTHM2019)
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.