2021
Autores
Silva, J; Oliveira, M; Ferreira, A;
Publicação
28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020)
Abstract
Whispered-voice to normal-voice conversion is typically achieved using codec-based analysis and re-synthesis, using statistical conversion of important spectral and prosodic features, or using data-driven end-to-end signal conversion. These approaches are however highly constrained by the architecture of the codec, the statistical projection, or the size and quality of the training data. In this paper, we presume direct implantation of voiced phonemes in whispered speech and we focus on fully flexible parametric models that i) can be independently controlled, ii) synthesize natural and linguistically correct voiced phonemes, iii) preserve idiosyncratic characteristics of a given speaker, and iv) are amenable to co-articulation effects through simple model interpolation. We use natural spoken and sung vowels to illustrate these capabilities in a signal modeling and re-synthesis process where spectral magnitude, phase structure, F-0 contour and sound morphing can be independently controlled in arbitrary ways.
2021
Autores
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;
Publicação
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY
Abstract
There is nowadays a constant flux of data being generated and collected in all types of real world systems. These data sets are often indexed by time, space, or both requiring appropriate approaches to analyze the data. In univariate settings, time series analysis is a mature field. However, in multivariate contexts, time series analysis still presents many limitations. In order to address these issues, the last decade has brought approaches based on network science. These methods involve transforming an initial time series data set into one or more networks, which can be analyzed in depth to provide insight into the original time series. This review provides a comprehensive overview of existing mapping methods for transforming time series into networks for a wide audience of researchers and practitioners in machine learning, data mining, and time series. Our main contribution is a structured review of existing methodologies, identifying their main characteristics, and their differences. We describe the main conceptual approaches, provide authoritative references and give insight into their advantages and limitations in a unified way and language. We first describe the case of univariate time series, which can be mapped to single layer networks, and we divide the current mappings based on the underlying concept: visibility, transition, and proximity. We then proceed with multivariate time series discussing both single layer and multiple layer approaches. Although still very recent, this research area has much potential and with this survey we intend to pave the way for future research on the topic. This article is categorized under: Fundamental Concepts of Data and Knowledge > Data Concepts Fundamental Concepts of Data and Knowledge > Knowledge Representation
2021
Autores
Pinto, H; Pernice, R; Amado, C; Silva, ME; Javorka, M; Faes, L; Rocha, AP;
Publicação
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC)
Abstract
Heart Period (H) results from the activity of several coexisting control mechanisms, involving Systolic Arterial Pressure (S) and Respiration (R), which operate across multiple time scales encompassing not only short-term dynamics but also long-range correlations. In this work, multiscale representation of Transfer Entropy (TE) and of its decomposition in the network of these three interacting processes is obtained by extending the multivariate approach based on linear parametric VAR models to the Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian processes. This approach allows to dissect the different contributions to cardiac dynamics accounting for the simultaneous presence of short and long term dynamics. The proposed method is first tested on simulations of a benchmark VARFI model and then applied to experimental data consisting of H, S and R time series measured in healthy subjects monitored at rest and during mental and postural stress. The results reveal that the proposed method can highlight the dependence of the information transfer on the balance between short-term and long-range correlations in coupled dynamical systems.
2021
Autores
Rocha, AP; Pinto, H; Amado, C; Silva, ME; Pernice, R; Javorka, M; Faes, L;
Publicação
Proceedings of Entropy 2021: The Scientific Tool of the 21st Century
Abstract
2021
Autores
Monteiro, A; Menezes, R; Silva, ME;
Publicação
TEST
Abstract
Real time series sometimes exhibit various types of "irregularities": missing observations, observations collected not regularly over time for practical reasons, observation times driven by the series itself, or outlying observations. However, the vast majority of methods of time series analysis are designed for regular time series only. A particular case of irregularly spaced time series is that in which the sampling procedure over time depends also on the observed values. In such situations, there is stochastic dependence between the process being modelled and the times of the observations. In this work, we propose a model in which the sampling design depends on all past history of the observed processes. Taking into account the natural temporal order underlying available data represented by a time series, then a modelling approach based on evolutionary processes seems a natural choice. We consider maximum likelihood estimation of the model parameters. Numerical studies with simulated and real data sets are performed to illustrate the benefits of this model-based approach.
2021
Autores
Puindi, AC; Silva, ME;
Publicação
JOURNAL OF APPLIED STATISTICS
Abstract
This work presents a framework of dynamic structural models with covariates for short-term forecasting of time series with complex seasonal patterns. The framework is based on the multiple sources of randomness formulation. A noise model is formulated to allow the incorporation of randomness into the seasonal component and to propagate this same randomness in the coefficients of the variant trigonometric terms over time. A unique, recursive and systematic computational procedure based on the maximum likelihood estimation under the hypothesis of Gaussian errors is introduced. The referred procedure combines the Kalman filter with recursive adjustment of the covariance matrices and the selection method of harmonics number in the trigonometric terms. A key feature of this method is that it allows estimating not only the states of the system but also allows obtaining the standard errors of the estimated parameters and the prediction intervals. In addition, this work also presents a non-parametric bootstrap approach to improve the forecasting method based on Kalman filter recursions. The proposed framework is empirically explored with two real time series.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.