Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HASLab

2018

A Note on Reactive Transitions and Reo Connectors

Autores
Figueiredo, D; Martins, MA; Barbosa, LS;

Publicação
It's All About Coordination - Essays to Celebrate the Lifelong Scientific Achievements of Farhad Arbab

Abstract
The structure of a reactive transition system can to be modified on the fly by e.g. removing, reversing or adding new transitions. The topic has been studied by D. Gabbay and his collaborators in different contexts. In this paper we take their work a step further, introducing a suitable notion of bisimulation and obtaining a Hennessy-Milner theorem with respect to a hybrid logic in which transition properties can be expressed. Our motivation is to provide a characterisation of equivalence for such systems in order to exploit their possible roles in the formal description of software connectors in Reo, either from a behavioural (semantic) or spatial (syntactic) point of view.

2018

A Research Agenda on Quantum Algoritmics

Autores
Barbosa, LS; Madeira, A;

Publicação
ERCIM NEWS

Abstract
Quantum algorithmics is emerging as a hot area of research, with the potential to have groundbreaking impacts on many different fields. The benefits come at a high price, however: quantum programming is hard and finding new quantum algorithms is far from straightforward. This area of research may greatly benefit from mathematical foundations and calculi, capable of supporting algorithm development and analysis. The Quantum Algorithmics Agenda at QuantaLab is contributing by seeking a suitable semantics-calculus-logic trilogy for quantum computation.

2018

Hierarchical Hybrid Logic

Autores
Madeira, A; Neves, R; Martins, MA; Barbosa, LS;

Publicação
ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE

Abstract
We introduce HHL, a hierarchical variant of hybrid logic. We study first order correspondence results and prove a Hennessy-Milner like theorem relating (hierarchical) bisimulation and modal equivalence for HHL. Combining hierarchical transition structures with the ability to refer to specific states at different levels, this logic seems suitable to express and verify properties of hierarchical transition systems, a pervasive semantic structure in Computer Science.

2018

Reactive Models for Biological Regulatory Networks

Autores
Figueiredo, D; Barbosa, LS;

Publicação
Molecular Logic and Computational Synthetic Biology - First International Symposium, MLCSB 2018, Santiago, Chile, December 17-18, 2018, Revised Selected Papers

Abstract
A reactive model, as studied by D. Gabbay and his collaborators, can be regarded as a graph whose set of edges may be altered whenever one of them is crossed. In this paper we show how reactive models can describe biological regulatory networks and compare them to Boolean networks and piecewise-linear models, which are some of the most common kinds of models used nowadays. In particular, we show that, with respect to the identification of steady states, reactive Boolean networks lie between piecewise linear models and the usual, plain Boolean networks. We also show this ability is preserved by a suitable notion of bisimulation, and, therefore, by network minimisation. © 2019, Springer Nature Switzerland AG.

2018

Permutability in proof terms for intuitionistic sequent calculus with cuts

Autores
Santo, JE; Frade, MJ; Pinto, L;

Publicação
Leibniz International Proceedings in Informatics, LIPIcs

Abstract
This paper gives a comprehensive and coherent view on permutability in the intuitionistic sequent calculus with cuts. Specifically we show that, once permutability is packaged into appropriate global reduction procedures, it organizes the internal structure of the system and determines fragments with computational interest, both for the computation-as-proof-normalization and the computation-as-proof-search paradigms. The vehicle of the study is a ?-calculus of multiary proof terms with generalized application, previously developed by the authors (the paper argues this system represents the simplest fragment of ordinary sequent calculus that does not fall into mere natural deduction). We start by adapting to our setting the concept of normal proof, developed by Mints, Dyckhoff, and Pinto, and by defining natural proofs, so that a proof is normal iff it is natural and cut-free. Natural proofs form a subsystem with a transparent Curry- Howard interpretation (a kind of formal vector notation for -terms with vectors consisting of lists of lists of arguments), while searching for normal proofs corresponds to a slight relaxation of focusing (in the sense of LJT). Next, we define a process of permutative conversion to natural form, and show that its combination with cut elimination gives a concept of normalization for the sequent calculus. We derive a systematic picture of the full system comprehending a rich set of reduction procedures (cut elimination, flattening, permutative conversion, normalization, focalization), organizing the relevant subsystems and the important subclasses of cut-free, normal, and focused proofs. © José Espírito Santo, Maria João Frade, and Luís Pinto; licensed under Creative Commons License CC-BY 22nd International Conference on Types for Proofs and Programs (TYPES 2016).

2018

Preference rules for label ranking: Mining patterns in multi-target relations

Autores
de Sa, CR; Azevedo, P; Soares, C; Jorge, AM; Knobbe, A;

Publicação
INFORMATION FUSION

Abstract
In this paper, we investigate two variants of association rules for preference data, Label Ranking Association Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The generation of LRAR requires special support and confidence measures to assess the similarity of rankings. In this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand which datasets benefit more from such measures and which parameters have more influence in the accuracy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules (PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Experimental results show the potential of both approaches.

  • 92
  • 259