2025
Autores
Costa, L; Barbosa, S; Cunha, J;
Publicação
CoRR
Abstract
2025
Autores
Costa, L; Barbosa, S; Cunha, J;
Publicação
CoRR
Abstract
2025
Autores
Proença, J; Edixhoven, L;
Publicação
SCIENCE OF COMPUTER PROGRAMMING
Abstract
We present Caos: a programming framework for computer-aided design of structural operational semantics for formal models. This framework includes a set of Scala libraries and a workflow to produce visual and interactive diagrams that animate and provide insights over the structure and the semantics of a given abstract model with operational rules. Caos follows an approach where theoretical foundations and a practical tool are built together, as an alternative to foundations-first design (tool justifies theory) or tool-first design (foundations justify practice). The advantage of Caos is that the tool-under-development can immediately be used to automatically run numerous and sizeable examples in order to identify subtle mistakes, unexpected outcomes, and unforeseen limitations in the foundations-under-development, as early as possible. More concretely, Caos supports the quick creation of interactive websites that help the end-users better understand a new language, structure, or analysis. End-users can be research colleagues trying to understand a companion paper or students learning about a new simple language or operational semantics. We include a list of open-source projects with a web frontend supported by Caos that are used both in research and teaching contexts.
2025
Autores
Latif, I; Ashraf, MM; Haider, U; Reeves, G; Untaroiu, A; Coelho, F; Browne, D;
Publicação
IEEE TRANSACTIONS ON CLOUD COMPUTING
Abstract
The growth in cloud computing, Big Data, AI and high-performance computing (HPC) necessitate the deployment of additional data centers (DC's) with high energy demands. The unprecedented increase in the Thermal Design Power (TDP) of the computing chips will require innovative cooling techniques. Furthermore, DC's are increasingly limited in their ability to add powerful GPU servers by power capacity constraints. As cooling energy use accounts for up to 40% of DC energy consumption, creative cooling solutions are urgently needed to allow deployment of additional servers, enhance sustainability and increase energy efficiency of DC's. The information in this study is provided from Start Campus' Sines facility supported by Alfa Laval for the heat exchanger and CO2 emission calculations. The study evaluates the performance and sustainability impact of various data center cooling strategies including an air-only deployment and a subsequent hybrid air/water cooling solution all utilizing sea water as the cooling source. We evaluate scenarios from 3 MW to 15+1 MW of IT load in 3 MW increments which correspond to the size of heat exchangers used in the Start Campus' modular system design. This study also evaluates the CO2 emissions compared to a conventional chiller system for all the presented scenarios. Results indicate that the effective use of the sea water cooled system combined with liquid cooled systems improve the efficiency of the DC, plays a role in decreasing the CO2 emissions and supports in achieving sustainability goals.
2025
Autores
Ramôa, M; Santos, LP; Mayhall, NJ; Barnes, E; Economou, SE;
Publicação
QUANTUM SCIENCE AND TECHNOLOGY
Abstract
Adaptive protocols enable the construction of more efficient state preparation circuits in variational quantum algorithms (VQAs) by utilizing data obtained from the quantum processor during the execution of the algorithm. This idea originated with Adaptive Derivative-Assembled Problem-Tailored variational quantum eigensolver (ADAPT-VQE), an algorithm that iteratively grows the state preparation circuit operator by operator, with each new operator accompanied by a new variational parameter, and where all parameters acquired thus far are optimized in each iteration. In ADAPT-VQE and other adaptive VQAs that followed it, it has been shown that initializing parameters to their optimal values from the previous iteration speeds up convergence and avoids shallow local traps in the parameter landscape. However, no other data from the optimization performed at one iteration is carried over to the next. In this work, we propose an improved quasi-Newton optimization protocol specifically tailored to adaptive VQAs. The distinctive feature in our proposal is that approximate second derivatives of the cost function are recycled across iterations in addition to optimal parameter values. We implement a quasi-Newton optimizer where an approximation to the inverse Hessian matrix is continuously built and grown across the iterations of an adaptive VQA. The resulting algorithm has the flavor of a continuous optimization where the dimension of the search space is augmented when the gradient norm falls below a given threshold. We show that this inter-optimization exchange of second-order information leads the approximate Hessian in the state of the optimizer to be consistently closer to the exact Hessian. As a result, our method achieves a superlinear convergence rate even in situations where the typical implementation of a quasi-Newton optimizer converges only linearly. Our protocol decreases the measurement costs in implementing adaptive VQAs on quantum hardware as well as the runtime of their classical simulation.
2025
Autores
Santo, LP; Bashford-Rogers, T; Barbosa, J; Navrátil, P;
Publicação
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Abstract
Rendering on conventional computers is capable of generating realistic imagery, but the computational complexity of these light transport algorithms is a limiting factor of image synthesis. Quantum computers have the potential to significantly improve rendering performance through reducing the underlying complexity of the algorithms behind light transport. This article investigates hybrid quantum-classical algorithms for ray tracing, a core component of most rendering techniques. Through a practical implementation of quantum ray tracing in a 3D environment, we show quantum approaches provide a quadratic improvement in query complexity compared to the equivalent classical approach. Based on domain specific knowledge, we then propose algorithms to significantly reduce the computation required for quantum ray tracing through exploiting image space coherence and a principled termination criteria for quantum searching. We show results obtained using a simulator for both Whitted style ray tracing, and for accelerating ray tracing operations when performing classical Monte Carlo integration for area lights and indirect illumination.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.