Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HASLab

2015

The Related-Key Analysis of Feistel Constructions

Autores
Barbosa, M; Farshim, P;

Publicação
FAST SOFTWARE ENCRYPTION, FSE 2014

Abstract
It is well known that the classical three-and four-round Feistel constructions are provably secure under chosen-plaintext and chosen-ciphertext attacks, respectively. However, irrespective of the number of rounds, no Feistel construction can resist related-key attacks where the keys can be offset by a constant. In this paper we show that, under suitable reuse of round keys, security under related-key attacks can be provably attained. Our modification is simpler and more efficient than alternatives obtained using generic transforms, namely the PRG transform of Bellare and Cash (CRYPTO 2010) and its random-oracle analogue outlined by Lucks (FSE 2004). Additionally we formalize Luck's transform and show that it does not always work if related keys are derived in an oracle-dependent way, and then prove it sound under appropriate restrictions.

2015

ADSNARK: Nearly Practical and Privacy-Preserving Proofs on Authenticated Data

Autores
Backes, M; Barbosa, M; Fiore, D; Reischuk, RM;

Publicação
2015 IEEE SYMPOSIUM ON SECURITY AND PRIVACY SP 2015

Abstract
We study the problem of privacy-preserving proofs on authenticated data, where a party receives data from a trusted source and is requested to prove computations over the data to third parties in a correct and private way, i.e., the third party learns no information on the data but is still assured that the claimed proof is valid. Our work particularly focuses on the challenging requirement that the third party should be able to verify the validity with respect to the specific data authenticated by the source - even without having access to that source. This problem is motivated by various scenarios emerging from several application areas such as wearable computing, smart metering, or general business-to-business interactions. Furthermore, these applications also demand any meaningful solution to satisfy additional properties related to usability and scalability. In this paper, we formalize the above three-party model, discuss concrete application scenarios, and then we design, build, and evaluate ADSNARK, a nearly practical system for proving arbitrary computations over authenticated data in a privacy-preserving manner. ADSNARK improves significantly over state-of-the-art solutions for this model. For instance, compared to corresponding solutions based on Pinocchio (Oakland' 13), ADSNARK achieves up to 25x improvement in proof-computation time and a 20x reduction in prover storage space.

2014

DATAFLASKS: epidemic store for massive scale systems

Autores
Maia, F; Matos, M; Vilaca, R; Pereira, J; Oliveira, R; Riviere, E;

Publicação
2014 IEEE 33RD INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS (SRDS)

Abstract
Very large scale distributed systems provide some of the most interesting research challenges while at the same time being increasingly required by nowadays applications. The escalation in the amount of connected devices and data being produced and exchanged, demands new data management systems. Although new data stores are continuously being proposed, they are not suitable for very large scale environments. The high levels of churn and constant dynamics found in very large scale systems demand robust, proactive and unstructured approaches to data management. In this paper we propose a novel data store solely based on epidemic (or gossip-based) protocols. It leverages the capacity of these protocols to provide data persistence guarantees even in highly dynamic, massive scale systems. We provide an open source prototype of the data store and correspondent evaluation.

2014

LAYSTREAM: composing standard gossip protocols for live video streaming

Autores
Matos, M; Schiavoni, V; Riviere, E; Felber, P; Oliveira, R;

Publicação
14-TH IEEE INTERNATIONAL CONFERENCE ON PEER-TO-PEER COMPUTING (P2P)

Abstract
Gossip-based live streaming is a popular topic, as attested by the vast literature on the subject. Despite the particular merits of each proposal, all need to implement and deal with common challenges such as membership management, topology construction and video packets dissemination. Well-principled gossip-based protocols have been proposed in the literature for each of these aspects. Our goal is to assess the feasibility of building a live streaming system, LAYSTREAM, as a composition of these existing protocols, to deploy the resulting system on real testbeds, and report on lessons learned in the process. Unlike previous evaluations conducted by simulations and considering each protocol independently, we use real deployments. We evaluate protocols both independently and as a layered composition, and unearth specific problems and challenges associated with deployment and composition. We discuss and present solutions for these, such as a novel topology construction mechanism able to cope with the specificities of a large-scale and delay-sensitive environment, but also with requirements from the upper layer. Our implementation and data are openly available to support experimental reproducibility.

2014

On the Support of Versioning in Distributed Key-Value Stores

Autores
Felber, P; Pasin, M; Riviere, E; Schiavoni, V; Sutra, P; Coelho, F; Oliveira, R; Matos, M; Vilaca, R;

Publicação
2014 IEEE 33RD INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS (SRDS)

Abstract
The ability to access and query data stored in multiple versions is an important asset for many applications, such as Web graph analysis, collaborative editing platforms, data forensics, or correlation mining. The storage and retrieval of versioned data requires a specific API and support from the storage layer. The choice of the data structures used to maintain versioned data has a fundamental impact on the performance of insertions and queries. The appropriate data structure also depends on the nature of the versioned data and the nature of the access patterns. In this paper we study the design and implementation space for providing versioning support on top of a distributed key-value store (KVS). We define an API for versioned data access supporting multiple writers and show that a plain KVS does not offer the necessary synchronization power for implementing this API. We leverage the support for listeners at the KVS level and propose a general construction for implementing arbitrary types of data structures for storing and querying versioned data. We explore the design space of versioned data storage ranging from a flat data structure to a distributed sharded index. The resulting system, ALEPH, is implemented on top of an industrial-grade open-source KVS, Infinispan. Our evaluation, based on real-world Wikipedia access logs, studies the performance of each versioning mechanisms in terms of load balancing, latency and storage overhead in the context of different access scenarios.

2014

pH1: A Transactional Middleware for NoSQL

Autores
Coelho, F; Cruz, F; Vilaca, R; Pereira, J; Oliveira, R;

Publicação
2014 IEEE 33RD INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS (SRDS)

Abstract
NoSQL databases opt not to offer important abstractions traditionally found in relational databases in order to achieve high levels of scalability and availability: transactional guarantees and strong data consistency. In this work we propose pH1, a generic middleware layer over NoSQL databases that offers transactional guarantees with Snapshot Isolation. This is achieved in a non-intrusive manner, requiring no modifications to servers and no native support for multiple versions. Instead, the transactional context is achieved by means of a multiversion distributed cache and an external transaction certifier, exposed by extending the client's interface with transaction bracketing primitives. We validate and evaluate pH1 with Apache Cassandra and Hyperdex. First, using the YCSB benchmark, we show that the cost of providing ACID guarantees to these NoSQL databases amounts to 11% decrease in throughput. Moreover, using the transaction intensive TPC-C workload, pH1 presented an impact of 22% decrease in throughput. This contrasts with OMID, a previous proposal that takes advantage of HBase's support for multiple versions, with a throughput penalty of 76% in the same conditions

  • 146
  • 261