2017
Autores
Proença, J; Clarke, D;
Publicação
Sci. Comput. Program.
Abstract
Typed models of connector/component composition specify interfaces describing ports of components and connectors. Typing ensures that these ports are plugged together appropriately, so that data can flow out of each output port and into an input port. These interfaces typically consider the direction of data flow and the type of values flowing. Components, connectors, and systems are often parameterised in such a way that the parameters affect the interfaces. Typing such connector families is challenging. This paper takes a first step towards addressing this problem by presenting a calculus of connector families with integer and boolean parameters. The calculus is based on monoidal categories, with a dependent type system that describes the parameterised interfaces of these connectors. We use families of Reo connectors as running examples, and show how this calculus can be applied to Petri Nets and to BIP systems. The paper focuses on the structure of connectors—well-connectedness—and less on their behaviour, making it easily applicable to a wide range of coordination and component-based models. A type-checking algorithm based on constraints is used to analyse connector families, supported by a proof-of-concept implementation. © 2017 Elsevier B.V.
2017
Autores
Proença, J; Lumpe, M;
Publicação
FACS
Abstract
2017
Autores
Pereira, R;
Publicação
PROCEEDINGS OF THE 2017 IEEE/ACM 39TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING COMPANION (ICSE-C 2017)
Abstract
This paper briefly presents a new approach for helping developers identify energy hot spots in their applications. Using tests cases, and statistical methods based on Spectrum-based Fault Localization, high energy consumption is related to the system's source code and a ranking of possible energy leaks are pointed. This technique is both language independent, and context level independent. Initial studies have also shown that using this technique helped developers identify and optimize energy problems in half the time while improving the energy efficiency by 18%. © 2017 IEEE.
2017
Autores
da Silva, CP; Lima, SR; Silva, JM;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
In recent years we witnessed the arrival of new trends, such as server virtualization and cloud services, an increasing number of mobile devices and online contents, leading the networking industry to deliberate about how traditional network architectures can be adapted or even deciding if a new perspective for them should be taken. SDN (Software-Defined Networking) emerged under this framing, opening a road for new developments due to the centralized logic control and view of the network, the decoupling of data and control planes, and the abstraction of the underlying network infrastructure from the applications. Although firstly oriented to packet switching, network measurements have also emerged as one promising field for SDN, as its flexibility enables programmable measurements, allowing a SDN controller to manage measurement tasks concurrently at multiple spatial and temporal scales. In this context, this paper is focused on exploring the SDN architecture and components for supporting the flexible selection and configuration of network monitoring tasks that rely on the use of traffic sampling. The aim is to take advantage of the integrated view of SDN controllers to apply and configure appropriate sampling techniques in network measurement points according to the requirements of specific measurement tasks. Through SDN, flexible and service-oriented configuration of network monitoring can be achieved, allowing also to improve the trade-off between accuracy and overhead of the monitoring process. In this way, this study, examining relevant SDN elements and solutions for deploying this monitoring paradigm, provides useful insights to enhance the programmability and efficiency of sampling-based network monitoring. © 2017, Springer International Publishing AG.
2017
Autores
Silva, JMC; Bispo, KA; Carvalho, P; Lima, SR;
Publicação
2017 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC)
Abstract
Adaptability and energy-efficient sensing are essential properties to sustain the easy deployment and lifetime of WSNs. These properties assume a stronger role in autonomous sensing environments where the application objectives or the parameters under measurement vary, and human intervention is not viable. In this context, this paper proposes LiteSense, a self-adaptive sampling scheme for WSNs, which aims at capturing accurately the behavior of the physical parameters of interest in each WSN context yet reducing the overhead in terms of sensing events and, consequently, the energy consumption. For this purpose, a set of low-complexity rules auto-regulates the sensing frequency depending on the observed parameter variation. Resorting to real environmental datasets, we provide statistical results showing the ability of LiteSense in reducing sensing activity and power consumption, while keeping the estimation accuracy of sensing events.
2017
Autores
Silva, JMC; Carvalho, P; Lima, SR;
Publicação
Int. J. Commun. Syst.
Abstract
Traffic sampling is viewed as a prominent strategy contributing to lightweight and scalable network measurements. Although multiple sampling techniques have been proposed and used to assist network engineering tasks, these techniques tend to address a single measurement purpose, without detailing the network overhead and computational costs involved. The lack of a modular approach when defining the components of traffic sampling techniques also makes difficult their analysis. Providing a modular view of sampling techniques and classifying their characteristics is, therefore, an important step to enlarge the sampling scope, improve the efficiency of measurement systems, and sustain forthcoming research in the area. Thus, this paper defines a taxonomy of traffic sampling techniques resorting to a comprehensive analysis of the inner components of existing proposals. After identifying granularity, selection scheme, and selection trigger as the main components differentiating sampling proposals, the study goes deeper on characterizing these components, including insights into their computational weight. Following this taxonomy, a general-purpose architecture is established to sustain the development of flexible sampling-based measurement systems. Traveling inside packet sampling techniques, this paper contributes to a clearer positioning and comparison of existing proposals, providing a road map to assist further research and deployments in the area. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.