2024
Autores
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, LM;
Publicação
2024 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT 2024
Abstract
Telecommunications and computer vision have evolved separately so far. Yet, with the shift to sub-terahertz (sub-THz) and terahertz (THz) radio communications, there is an opportunity to explore computer vision technologies together with radio communications, considering the dependency of both technologies on Line of Sight. The combination of radio sensing and computer vision can address challenges such as obstructions and poor lighting. Also, machine learning algorithms, capable of processing multimodal data, play a crucial role in deriving insights from raw and low-level sensing data, offering a new level of abstraction that can enhance various applications and use cases such as beamforming and terminal handovers. This paper introduces CONVERGE, a pioneering vision-radio paradigm that bridges this gap by leveraging Integrated Sensing and Communication (ISAC) to facilitate a dual View-to-Communicate, Communicate-to-View approach. CONVERGE offers tools that merge wireless communications and computer vision, establishing a novel Research Infrastructure (RI) that will be open to the scientific community and capable of providing open datasets. This new infrastructure will support future research in 6G and beyond concerning multiple verticals, such as telecommunications, automotive, manufacturing, media, and health.
2024
Autores
Conceicao, F; Teixeira, FB; Pessoa, LM; Robitzsch, S;
Publicação
2024 IEEE CONFERENCE ON STANDARDS FOR COMMUNICATIONS AND NETWORKING, CSCN
Abstract
Sensing will be a key technology in 6G networks, enabling a plethora of new sensing-enabled use cases. Some of the use cases require deployments over a wide physical area that needs to be sensed by multiple sensing sources at different locations. The efficient management of the sensing resources is pivotal for sustainable sensing-enabled mobile network designs. In this paper, we provide an example of such use case, and argue the energy consumption due to sensing has potential to scale to prohibitive levels. We then propose architectural enhancements to solve this problem, and discuss energy saving and energy efficient strategies in sensing, that can only be properly quantified and applied with the proposed architectural enhancements.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.