2025
Autores
Teixeira, F; Costa, J; Amorim, P; Guimarães, N; Ferreira Santos, D;
Publicação
Studies in health technology and informatics
Abstract
This work introduces a web application for extracting, processing, and visualizing data from sleep studies reports. Using Optical Character Recognition (OCR) and Natural Language Processing (NLP), the pipeline extracts over 75 key data points from four types of sleep reports. The web application offers an intuitive interface to view individual reports' details and aggregate data from multiple reports. The pipeline demonstrated 100% accuracy in extracting targeted information from a test set of 40 reports, even in cases with missing data or formatting inconsistencies. The developed tool streamlines the analysis of OSA reports, reducing the need for technical expertise and enabling healthcare providers and researchers to utilize sleep study data efficiently. Future work aims to expand the dataset for more complex analyses and imputation techniques.
2025
Autores
Freire, AM; Rodrigues, EM; Sousa, JV; Gouveia, M; Ferreira-Santos, D; Pereira, T; Oliveira, HP; Sousa, P; Silva, AC; Fernandes, MS; Hespanhol, V; Araújo, J;
Publicação
UNIVERSAL ACCESS IN HUMAN-COMPUTER INTERACTION, UAHCI 2025, PT I
Abstract
Lung cancer remains one of the most common and lethal forms of cancer, with approximately 1.8 million deaths annually, often diagnosed at advanced stages. Early detection is crucial, but it depends on physicians' accurate interpretation of computed tomography (CT) scans, a process susceptible to human limitations and variability. ByMe has developed a medical image annotation and anonymization tool designed to address these challenges through a human-centered approach. The tool enables physicians to seamlessly add structured attribute-based annotations (e.g., size, location, morphology) directly within their established workflows, ensuring intuitive interaction.Integrated with Picture Archiving and Communication Systems (PACS), the tool streamlines the annotation process and enhances usability by offering a dedicated worklist for retrospective and prospective case analysis. Robust anonymization features ensure compliance with privacy regulations such as the General Data Protection Regulation (GDPR), enabling secure dataset sharing for research and developing artificial intelligence (AI) models. Designed to empower AI integration, the tool not only facilitates the creation of high-quality datasets but also lays the foundation for incorporating AI-driven insights directly into clinical workflows. Focusing on usability, workflow integration, and privacy, this innovation bridges the gap between precision medicine and advanced technology. By providing the means to develop and train AI models for lung cancer detection, it holds the potential to significantly accelerate diagnosis as well as enhance its accuracy and consistency.
2024
Autores
Monteiro-Soares, M; Dores, J; Alves Palma, C; Galrito, S; Ferreira-Santos, D;
Publicação
Abstract
2020
Autores
Amorim, P; Ferreira Santos, D; Drummond, M; Rodrigues, PP;
Publicação
EUROPEAN RESPIRATORY JOURNAL
Abstract
2024
Autores
Camacho, KMC; Gomez-Pilar, J; Pereira-Rodrigues, P; Ferreira-Santos, D; Durante, CB; Albi, TR; Alvarez, DG; Gozal, D; Gutiérrez-Tobal, GC; Hornero, R; Del Campo, F;
Publicação
EUROPEAN RESPIRATORY JOURNAL
Abstract
2024
Autores
Amorim, P; Ferreira-Santos, D; Drummond, M; Rodrigues, PP;
Publicação
DIAGNOSTICS
Abstract
Background/Objectives: Obstructive sleep apnea (OSA) classification relies on polysomnography (PSG) results. Current guidelines recommend the development of clinical prediction algorithms in screening prior to PSG. A recent intuitive and user-friendly tool (OSABayes), based on a Bayesian network model using six clinical variables, has been proposed to quantify the probability of OSA. Our aims are (1) to validate OSABayes prospectively, (2) to build a smartphone app based on the proposed model, and (3) to evaluate app usability. Methods: We prospectively included adult patients suspected of OSA, without suspicion of other sleep disorders, who underwent level I or III diagnostic PSG. Apnea-hypopnea index (AHI) and OSABayes probabilities were obtained and compared using the area under the ROC curve (AUC [95%CI]) for OSA diagnosis (AHI >= 5/h) and higher severity levels (AHI >= 15/h) prediction. We built the OSABayes app on 'App Inventor 2', and the usability was assessed with a cognitive walkthrough method and a general evaluation. Results: 216 subjects were included in the validation cohort, performing PSG levels I (34%) and III (66%). OSABayes presented an AUC of 83.6% [77.3-90.0%] for OSA diagnosis and 76.3% [69.9-82.7%] for moderate/severe OSA prediction, showing good response for both types of PSG. The OSABayes smartphone application allows one to calculate the probability of having OSA and consult information about OSA and the tool. In the usability evaluation, 96% of the proposed tasks were carried out. Conclusions: These results show the good discrimination power of OSABayes and validate its applicability in identifying patients with a high pre-test probability of OSA. The tool is available as an online form and as a smartphone app, allowing a quick and accessible calculation of OSA probability.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.