2025
Autores
Santos, AD; de Almeida, JMMM; Mendes, JP; Almeida, MAS; Coelho, LC;
Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
Hydrogen (H-2) infrastructure is the focus of many initiatives for the planned energetic transition, but its volatility and flammability require extensive safety measures to prevent leakages and explosions. Magnesium thin films have been investigated not only for H-2 storage but also as switchable mirrors, which drastically change their optical properties when hydrogenated. Due to their lower cost compared to other hydride-forming or plasmonic metals commonly used in optical sensing, Mg-based H-2 fiber sensors have the potential to be both affordable and effective for scalable deployment in industrial settings. To this end, multilayer thin-film structures with Mg and palladium as adsorption catalyst were deposited on single-mode fiber tips, and H-2 loading/unloading processes were tested in a controlled flow gas setup. In parallel, an optical interrogation system prototype was developed, enabling fast data acquisition of fiber-tip reflectivity across multiple sensing probes at a wavelength of 1550 nm. Preliminary testing suggests fast response times of a few seconds for significant drops in reflectivity, facilitating straightforward detection of H-2 leaks using thresholding methods. Planned future work includes performance comparison with simpler sensing structures, durability and contaminant testing, and response time optimization.
2025
Autores
Carvalho, JPM; Mendes, JP; Coelho, LCC; de Almeida, JMMM;
Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
Optical fibers have been extensively applied in optical sensing platforms for their large bandwidth, stability, light weight and accessibility. This work presents a theoretical analysis of an optical fiber surface plasmon resonance system for refractometric sensing applications. The device consists of a multilayer hyperbolic metamaterial (HMM) composed of concentric Au/TiO2 alternate layers in optical fiber matrix. HMMs exhibit hyperbolic dispersion (HD) and the interaction of different plasmonic modes at each interface of the HMM is reported to enhance light-matter coupling, leading to an increased refractometric sensitivity. The HD and its effects on sensor performance are numerically investigated by effective medium theory (EMT) and backed by the exact transfer matrix method (TMM). The maximum sensor performance was attained for a configuration with 2 bilayers with 30 nm thickness for a metal fill fraction (rho) of 0.7, achieving a figure of merit (FOM) of 18.45. A direct comparison with a plasmonic Au optical fiber sensor returned an optimized FOM of 5.74, therefore achieving over a three-fold increase in sensor performance, assessing the potential of HMM as highly refractometric sensitive platforms.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.