2013
Autores
Keshtgar, M; Williams, NR; Corica, T; Bulsara, M; Saunders, C; Flyger, H; Bentzon, N; Cardoso, J; Michalopoulos, N; Joseph, D;
Publicação
EUROPEAN JOURNAL OF CANCER
Abstract
2013
Autores
Marques, J; Vasconcelos, A; Teixeira, LF;
Publicação
Studies in Health Technology and Informatics
Abstract
This paper describes the design and development of a tablet-based gaming platform targeting the senior population, aiming at improving their overall wellbeing by stimulating their cognitive capabilities and promoting social interaction between players. To achieve these goals, we started by performing a study of the specific characteristics of the senior user as well as what makes a game appealing to the player. Furthermore we investigated why the tablet proves to be an advantageous device to our target audience. Based on the results of our research, we developed a solution that incorporates cognitive and social mechanisms into its games, while performing iterative evaluations together with the final user by adopting a user-centered design methodology. In each design phase, a pre-selected group of senior participants experimented with the game platform and provided feedback to improve its features and usability. Through a series of short-term and a long-term evaluation, the game platform proved to be appealing to its intended users, providing an enjoyable gaming experience.
2013
Autores
Bernardes, G; Guedes, C; Pennycook, B;
Publicação
FROM SOUNDS TO MUSIC AND EMOTIONS
Abstract
This paper describes the creative and technical processes behind earGram, an application created with Pure Data for real-time concatenative sound synthesis. The system encompasses four generative music strategies that automatically rearrange and explore a database of descriptor-analyzed sound snippets (corpus) by rules other than their original temporal order into musically coherent outputs. Of note are the system's machine-learning capabilities as well as its visualization strategies, which constitute a valuable aid for decision-making during performance by revealing musical patterns and temporal organizations of the corpus.
2013
Autores
Silva, NA; Carvalho, MI; Guerreiro, A;
Publicação
8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS
Abstract
Spatial solitons are robust localized nonlinear waves that are able to propagate without significant changes to their structure. Most of the proposal of the application of solitons uses them to transmit and process information in optical fibers and optical circuits. In the later the solitons can be guided through different paths by presetting some soliton characteristics (such as the phase), and even using some solitons to control the path of other pulses. In this paper, we use these properties of optical spatial solitons in a cubic nonlinear media to have lightons: phonon-like oscillations of a chain of solitonic light pulses. Conceptually, this work aims to explore the dual nature of solitons as a particle-like wave, by considering the displacement wave of solitons in a 1-dimensional chain.
2013
Autores
Silva, NA; Carvalho, MI; Guerreiro, A;
Publicação
8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS
Abstract
In this paper we address soliton-soliton interactions in a nonlinear cubic-quintic optic media, using for that purpose numerical methods and high performance graphics processor unit (GPU) computing. We describe an implementation of GPU-based computational simulations of the generalized Nonlinear Schrodinger Equation, obtaining simulations more than 40 times faster relative to CPU-based simulations, especially in the multidimensional case. We focus our attention in the study of soliton collisions and scattering phenomena that, offering the possibility of steering light with light, open a path towards future optical devices.
2013
Autores
Oliveira, LM; Carvalho, MI; Nogueira, EM; Tuchin, VV;
Publicação
LASER PHYSICS
Abstract
The study of agent diffusion in biological tissues is very important to understand and characterize the optical clearing effects and mechanisms involved: tissue dehydration and refractive index matching. From measurements made to study the optical clearing, it is obvious that light scattering is reduced and that the optical properties of the tissue are controlled in the process. On the other hand, optical measurements do not allow direct determination of the diffusion properties of the agent in the tissue and some calculations are necessary to estimate those properties. This fact is imposed by the occurrence of two fluxes at optical clearing: water typically directed out of and agent directed into the tissue. When the water content in the immersion solution is approximately the same as the free water content of the tissue, a balance is established for water and the agent flux dominates. To prove this concept experimentally, we have measured the collimated transmittance of skeletal muscle samples under treatment with aqueous solutions containing different concentrations of glucose. After estimating the mean diffusion time values for each of the treatments we have represented those values as a function of glucose concentration in solution. Such a representation presents a maximum diffusion time for a water content in solution equal to the tissue free water content. Such a maximum represents the real diffusion time of glucose in the muscle and with this value we could calculate the corresponding diffusion coefficient.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.