Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2017

Mistrustful P2P: Deterministic privacy-preserving P2P file sharing model to hide user content interests in untrusted peer-to-peer networks

Autores
da Silva, PM; Dias, J; Ricardo, M;

Publicação
COMPUTER NETWORKS

Abstract
P2P networks endowed individuals with the means to easily and efficiently distribute digital media over the Internet, but user legal liability issues may be raised as they also facilitate the unauthorized distribution and reproduction of copyrighted material. Traditional P2P file sharing systems focus on performance and scalability, disregarding any privacy or legal issues that may arise from their use. Lacking alternatives, and unaware of the privacy issues that arise from relaying traffic of insecure applications, users have adopted anonymity systems for P2P file sharing. This work aims at hiding user content interests from malicious peers through plausible deniability. The Mistrustful P2P model is built on the concept of mistrusting all the entities participating in the P2P network, hence its name. It provides a deterministic and configurable privacy protection that relies on cover content downloads to hide user content interests, has no trust requirements, and introduces several mechanisms to prevent user legal liability and reduce network overhead while enabling timely content downloads. We extend previous work on the Mistrustful P2P model by discussing its legal and ethical framework, assessing its feasibility for more use cases, providing a security analysis, comparing it against a traditional P2P file sharing model, and further defining and improving its main mechanisms.

2017

A Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

Autores
Fontes, H; Campos, R; Ricardo, M;

Publicação
Proceedings of the Workshop on ns-3, Porto, Portugal, June 13 - 14, 2017

Abstract
A common problem in mobile networking research and development is the cost related to deploying and running real-world mobile testbeds. Due to cost and operational constraints, these testbeds usually run for short time periods but generate very unique and relevant results that are hard to reproduce. We propose the use of ns-3 as a solution to successfully reproduce real-world mobile testbed experiments. This is accomplished by feeding ns-3 with real testbed traces including node positions and radio link quality only. In order to validate our approach, the network throughput between a fixed Base Station and a Unmanned Aerial Vehicle (UAV) was measured in a real-world testbed. The experimental results were compared to the network throughput achieved using the ns-3 trace-based simulation and a plain ns-3 simulation. The obtained results show the high accuracy of the trace-based simulation, thus validating our approach. © 2017 ACM.

2017

2017 Wireless Days, Porto, Portugal, March 29-31, 2017

Autores
Ricardo, Manuel; Campos, Rui; Ruela, Jose; Morla, Ricardo; Teixeira, Filipe; Pessoa, Luis; Salgado, Henrique;

Publicação
Wireless Days

Abstract

2017

Synchronization of application-driven WSN

Autores
Marques, B; Ricardo, M;

Publicação
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING

Abstract
The growth of wireless sensor networks (WSN) has resulted in part from requirements for connecting sensors and advances in radio technologies. WSN nodes may be required to save energy and therefore wake up and sleep in a synchronized way. In this paper, we propose an application-driven WSN node synchronization mechanism which, by making use of cross-layer information such as application ID and duty cycle, and by using the exponentially weighted moving average (EWMA) technique, enables nodes to wake up and sleep without losing synchronization. The results obtained confirm that this mechanism maintains the nodes in a mesh network synchronized according to the applications they run, while maintaining a high packet reception ratio.

2017

A traffic-aware solution for green Wireless Video Sensor Networks

Autores
Sousa, F; Dias, J; Ribeiro, F; Campos, R; Ricardo, M;

Publicação
2017 Wireless Days, Porto, Portugal, March 29-31, 2017

Abstract
The growth of the IP cameras market, due to their low price and high availability, is making Wireless Video Sensor Networks (WVSNs) attractive. In a mesh, multi-hop video surveillance scenario Wi-Fi is the enabling technology for WVSNs, due to its flexibility and low cost. However, WVSNs still suffer from bad performance, throughput unfairness, and energy inefficiency. Previously, we proposed FM-WiFIX+, a holistic solution to address the problem. FM-WiFIX+ uses FM radio to signal when a video sensor should turn its IEEE 802.11 interface OFF, thus saving energy. Herein, we present a new traffic-aware version of FM-WiFIX+. The results obtained through numerical, simulation, and experimental evaluation demonstrate that the new version can achieve savings in energy consumption up to 84 %, while maintaining the levels of performance and throughput fairness. © 2017 IEEE.

2017

Energy-efficient node selection in application-driven WSN

Autores
Marques, B; Ricardo, M;

Publicação
WIRELESS NETWORKS

Abstract
The growth of wireless networks has resulted in part from requirements for connecting people and advances in radio technologies. Wireless sensor networks are an example of these networks in which a large number of tiny devices interacting with their environments may be internet-worked together and accessible through the Internet. As these devices may be scattered in an unplanned way, a routing protocol is needed. The RPL protocol is the IETF proposed standard protocol for IPv6-based multi-hop WSN. RPL requires that communication paths go through a central router which may provide suboptimal paths, not considering the characteristics of the applications the nodes run. In this paper is proposed an Application-Driven extension to RPL which enables to increase the WSN lifetime by limiting the routing and forwarding functions of the network mainly to nodes running the same application. As nodes may join a network at a non predictable time, they must be synchronized with respect to their application duty cycles. Therefore, nodes have to wake up and sleep in a synchronized way. In this paper it is also proposed such synchronization mechanism. The results confirm that the proposed solutions provide lower energy consumption and lower number of packets exchanged than the conventional RPL solution, while maintaining fairness and the packet reception ratio high.

  • 191
  • 370