2022
Autores
Goncalves, C; Carvalho, DN; Silva, TH; Reis, RL; Oliveira, JM;
Publicação
ADVANCED ENGINEERING MATERIALS
Abstract
Osteoarthritis (OA) is a progressive degenerative disease that causes severe pain and functional limitation, especially during locomotion. It is the most common arthritis type that damages the surface of articular cartilage until the underlying bone. In the past decade, the scientific community has made a considerable effort to improve or discover therapeutical products used as a form of conservative treatment capable of restoring the damaged articular tissue, avoiding, as far as possible, the use of surgical practices. The most common and direct nonoperative application available for OA treatment is the viscosupplementation (VS) procedure that demonstrates a safe, effective method and is less painful for the patients. The most recent works dealing with the design, development, and validation of viscosupplement products in preclinical and clinical trials for OA treatment are overviewed herein. In general, despite the development of new products, hyaluronic acid continues to be among the most reported intra-articular viscosupplement products used in clinical trials, typically used as an isolated product or conjugated with other biologicals or drugs, such as platelet-rich plasma and corticosteroids (CS). However, this issue is still demanding innovation. Approaches comprising new biomaterials as VS products, with intrinsic bioactivity, economical, and environmental friendliness, are required.
2020
Autores
Sousa, RO; Martins, E; Carvalho, DN; Alves, AL; Oliveira, C; Duarte, ARC; Silva, TH; Reis, RL;
Publicação
JOURNAL OF POLYMER RESEARCH
Abstract
The extraction of collagen from fish skins is being proposed as strategy for valorization of marine origin by-products, being a sustainable alternative to mammal collagen. The method commonly uses solutions of organic acids, but new methodologies are arising, aiming to improve process yields and/or the properties of the resulting products. In this work, skins removed from salt brine Atlantic cod (Gadus morhua) were used to extract collagen, using water acidified with CO2, obtaining an extraction yield of 13.8% (w/w). Acidified water extracted collagen (AWC) presented a total content of proline-like amino acids of 151/1000 residues, with a degree of hydroxylation of 38%, and its SDS-PAGE profile is compatible with type I collagen. Moreover, FTIR, CD and XRD results suggest the presence of preserved triple helix, having a denaturation temperature of 32.3 degrees C as determined by micro-DSC. AWC exhibited a typical shear thinning behavior, interesting regarding their further processing, namely in jelly-like formulations. Additionally, the presence of AWC in MRC-5 human fibroblasts culture did not affect cell viability, demonstrating the non-cytotoxic behavior. Overall, the results support the efficiency of the proposed approach for collagen extraction and further enable the design of methodologies to address AWC use in biomedical or cosmetic context.
2020
Autores
Sousa, RO; Alves, AL; Carvalho, DN; Martins, E; Oliveira, C; Silva, TH; Reis, RL;
Publicação
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
Abstract
Atlantic cod is processed industrially for food purposes, with several by-products being directed to animal feed and other ends. Looking particularly into swim bladders, the extraction of collagen can be a valuable strategy for by-product valorization, explored in the present work for the first time. Collagen was extracted using acetic acid (ASCsb) and pepsin (PSCsb) with yields of 5.72% (w/w) and 11.14% (w/w), respectively. SDS-PAGE profile showed that the extracts were compatible with type I collagen. FTIR, CD and XRD results suggest that the PSCsb structure underwent partial denaturation, with microDSC showing a band at 54 degrees C probably corresponding to a melting process, while ASCsb structure remained intact, with preserved triple helix and a denaturation temperature of 29.6 degrees C. Amino acid composition indicates that the total content of proline-like amino acids was 148/1000 residues for ASCsb and 141/1000 residues for PSCsb, with a hydroxylation degree of about 37%. The extracts exhibited a typical shear thinning behavior, interesting property regarding their further processing toward the development of biomaterials. In this regard, assessment of metabolic activity of human fibroblast cells cultured in the presence of collagen extracts with concentrations up to 3 mg/mL revealed the absence of cytotoxic behavior. Collagen extracts obtained from Atlantic cod swim bladders shown attractive properties regarding their use in cosmetic or biomedical applications.
2021
Autores
Carvalho, DN; Reis, RL; Silva, TH;
Publicação
BIOMATERIALS SCIENCE
Abstract
The body's self-repair capacity is limited, including injuries on articular cartilage zones. Over the past few decades, tissue engineering and regenerative medicine (TERM) has focused its studies on the development of natural biomaterials for clinical applications aiming to overcome this self-therapeutic bottleneck. This review focuses on the development of these biomaterials using compounds and materials from marine sources that are able to be produced in a sustainable way, as an alternative to mammal sources (e.g., collagens) and benefiting from their biological properties, such as biocompatibility, low antigenicity, biodegradability, among others. The structure and composition of the new biomaterials require mimicking the native extracellular matrix (ECM) of articular cartilage tissue. To design an ideal temporary tissue-scaffold, it needs to provide a suitable environment for cell growth (cell attachment, proliferation, and differentiation), towards the regeneration of the damaged tissues. Overall, the purpose of this review is to summarize various marine sources to be used in the development of different tissue-scaffolds with the capability to sustain cells envisaging cartilage tissue engineering, analysing the systems displaying more promising performance, while pointing out current limitations and steps to be given in the near future.
2021
Autores
Carvalho, DN; Goncalves, C; Oliveira, JM; Williams, DS; Mearns Spragg, A; Reis, RL; Silva, TH;
Publicação
GREEN CHEMISTRY
Abstract
Marine polymers such as collagen, chitosan, and fucoidan can be combined to form ionic-linked hydrogel networks towards applications in tissue engineering (TE). The use of greener approaches (as determined by green metrics - E-factor), including the absence of external chemical cross-linking agents, has advantages regarding the potential cytotoxicity. By tailoring the formulation of such an ionic-linked hydrogel, it is possible to fine-tune scaffold biofunctionality. In this study, a comparative study of composite hydrogels was accomplished, seeking to understand the correlation between polymer characteristics and physical behaviour to develop the applicability of this technology in soft-to-hard TE. Parameters such as polymer concentration, molecular weight, polymer-biomaterials bonds, biomaterial structural architecture, pore size, and mechanical rheological properties were directly correlated to the hydrogel's formulation. The results highlight that the formulation with greatest potential was the 3-component hydrogel (H-12, followed by H-10, H-11), due to its superior mechanical properties, making it suitable for cartilage TE. This research offers a valuable perspective on hydrogel formulation and a new processing methodology, as well as how tailoring the hydrogel composition influences mechanical behaviour to support selecting the best composition for tissue engineering applications.
2023
Autores
Carvalho, DN; Dani, S; Sotelo, CG; Perez Martin, RI; Reis, RL; Silva, TH; Gelinsky, M;
Publicação
BIOMEDICAL MATERIALS
Abstract
In the past decade, there has been significant progress in 3D printing research for tissue engineering (TE) using biomaterial inks made from natural and synthetic compounds. These constructs can aid in the regeneration process after tissue loss or injury, but achieving high shape fidelity is a challenge as it affects the construct's physical and biological performance with cells. In parallel with the growth of 3D bioprinting approaches, some marine-origin polymers have been studied due to their biocompatibility, biodegradability, low immunogenicity, and similarities to human extracellular matrix components, making them an excellent alternative to land mammal-origin polymers with reduced disease transmission risk and ethical concerns. In this research, collagen from shark skin, chitosan from squid pens, and fucoidan from brown algae were effectively blended for the manufacturing of an adequate biomaterial ink to achieve a printable, reproducible material with a high shape fidelity and reticulated using four different approaches (phosphate-buffered saline, cell culture medium, 6% CaCl2, and 5 mM Genipin). Materials characterization was composed by filament collapse, fusion behavior, swelling behavior, and rheological and compressive tests, which demonstrated favorable shape fidelity resulting in a stable structure without deformations, and interesting shear recovery properties around the 80% mark. Additionally, live/dead assays were conducted in order to assess the cell viability of an immortalized human mesenchymal stem cell line, seeded directly on the 3D printed constructs, which showed over 90% viable cells. Overall, the Roswell Park Memorial Institute cell culture medium promoted the adequate crosslinking of this biopolymer blend to serve the TE approach, taking advantage of its capacity to hamper pH decrease coming from the acidic biomaterial ink. While the crosslinking occurs, the pH can be easily monitored by the presence of the indicator phenol red in the cell culture medium, which reduces costs and time.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.