2023
Autores
Correia, A; Guimaraes, D; Paredes, H; Fonseca, B; Paulino, D; Trigo, L; Brazdil, P; Schneider, D; Grover, A; Jameel, S;
Publicação
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS
Abstract
Visualizing and examining the intellectual landscape and evolution of scientific communities to support collaboration is crucial for multiple research purposes. In some cases, measuring similarities and matching patterns between research publication document sets can help to identify people with similar interests for building research collaboration networks and university-industry linkages. The premise of this work is assessing feasibility for resolving ambiguous cases in similarity detection to determine authorship with natural language processing (NLP) techniques so that crowdsourcing is applied only in instances that require human judgment. Using an NLP-crowdsourcing convergence strategy, we can reduce the costs of microtask crowdsourcing while saving time and maintaining disambiguation accuracy over large datasets. This article contributes a next-gen crowd-artificial intelligence framework that used an ensemble of term frequency-inverse document frequency and bidirectional encoder representation from transformers to obtain similarity rankings for pairs of scientific documents. A sequence of content-based similarity tasks was created using a crowd-powered interface for solving disambiguation problems. Our experimental results suggest that an adaptive NLP-crowdsourcing hybrid framework has advantages for inter-researcher similarity detection tasks where fully automatic algorithms provide unsatisfactory results, with the goal of helping researchers discover potential collaborators using data-driven approaches.
2023
Autores
Flores, H; Pinto, R;
Publicação
International Conference on Higher Education Advances
Abstract
Motivation and engagement play a crucial role in student success in a course. Students may lose interest or underestimate courses that tackle non-core learning outcomes to their specific curriculum or program. Gamification, using game elements (e.g., rewards, challenges) in non-game contexts, is one way to motivate and engage students. Some educational courses use project-based learning, where students tackle problems, overcome obstacles, and gain knowledge. Quest-based games are designed as systems of challenges that players must complete to advance and win the game. They were linked with education by applying specific game mechanics to a computing course unit. This paper case studies the application of a quest-based gamification approach in a mandatory software engineering course to boost engagement among higher education students. Results were collected through observational methods and surveying the students, indicating a tendency for higher grades in course years implementing gamification while maintaining satisfactory levels of motivation and engagement. © 2023 International Conference on Higher Education Advances. All rights reserved.
2023
Autores
Francisco, C; Henriques, R; Barbosa, S;
Publicação
AEROSPACE
Abstract
The ionosphere is a fundamental component of the Earth's atmosphere, impacting human activities such as communication transmissions, navigation systems, satellite functions, power network systems, and natural gas pipelines, even endangering human life or health. As technology moves forward, understanding the impact of the ionosphere on our daily lives becomes increasingly important. CubeSats are a promising way to increase understanding of this important atmospheric layer. This paper reviews the state of the art of CubeSat missions designed for ionospheric studies. Their main instrumentation payload and orbits are also analyzed from the point of view of their importance for the missions. It also focuses on the importance of data and metadata, and makes an approach to the aspects that need to be improved.
2023
Autores
Victoriano, M; Oliveira, L; Oliveira, HP;
Publicação
Pattern Recognition and Image Analysis - 11th Iberian Conference, IbPRIA 2023, Alicante, Spain, June 27-30, 2023, Proceedings
Abstract
The impact of climate change on global temperature and precipitation patterns can lead to an increase in extreme environmental events. These events can create favourable conditions for the spread of plant pests and diseases, leading to significant production losses in agriculture. To mitigate these losses, early detection of pests is crucial in order to implement effective and safe control management strategies, to protect the crops, public health and the environment. Our work focuses on the development of a computer vision framework to detect and classify the olive fruit fly, also known as Bactrocera oleae, from images, which is a serious concern to the EU’s olive tree industry. The images of the olive fruit fly were obtained from traps placed throughout olive orchards located in Greece. The approach entails augmenting the dataset and fine-tuning the YOLOv7 model to improve the model performance, in identifying and classifying olive fruit flies. A Portuguese dataset was also used to further perform detection. To assess the model, a set of metrics were calculated, and the experimental results indicated that the model can precisely identify the positive class, which is the olive fruit fly.
2023
Autores
Tse, A; Oliveira, L; Vinagre, J;
Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I
Abstract
Several systems that employ machine learning models are subject to strict latency requirements. Fraud detection systems, transportation control systems, network traffic analysis and footwear manufacturing processes are a few examples. These requirements are imposed at inference time, when the model is queried. However, it is not trivial how to adjust model architecture and hyperparameters in order to obtain a good trade-off between predictive ability and inference time. This paper provides a contribution in this direction by presenting a study of how different architectural and hyperparameter choices affect the inference time of a Convolutional Neural Network for network traffic analysis. Our case study focus on a model for traffic correlation attacks to the Tor network, that requires the correlation of a large volume of network flows in a short amount of time. Our findings suggest that hyperparameters related to convolution operations-such as stride, and the number of filters-and the reduction of convolution and max-pooling layers can substantially reduce inference time, often with a relatively small cost in predictive performance.
2023
Autores
Ramos, R; Oliveira, L; Vinagre, J;
Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I
Abstract
In an automatic music playlist generator, such as an automated online radio channel, how should the system react when a user hits the skip button? Can we use this type of negative feedback to improve the list of songs we will playback for the user next? We propose SkipAwareRec, a next-item recommendation system based on reinforcement learning. SkipAwareRec recommends the best next music categories, considering positive feedback consisting of normal listening behaviour, and negative feedback in the form of song skips. Since SkipAwareRec recommends broad categories, it needs to be coupled with a model able to choose the best individual items. To do this, we propose Hybrid SkipAwareRec. This hybrid model combines the SkipAwareRec with an incremental Matrix Factorisation (MF) algorithm that selects specific songs within the recommended categories. Our experiments with Spotify's Sequential Skip Prediction Challenge dataset show that Hybrid SkipAwareRec has the potential to improve recommendations by a considerable amount with respect to the skip-agnostic MF algorithm. This strongly suggests that reformulating the next recommendations based on skips improves the quality of automatic playlists. Although in this work we focus on sequential music recommendation, our proposal can be applied to other sequential content recommendation domains, such as health for user engagement.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.