Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2024

Performance Analysis and Evaluation of Cloud Vision Emotion APIs

Autores
Khanal, SR; Sharma, P; Thapa, K; Fernandes, H; Barroso, J; Filipe, V;

Publicação
PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE DEVELOPMENT AND TECHNOLOGIES FOR ENHANCING ACCESSIBILITY AND FIGHTING INFO-EXCLUSION, DSAI 2024

Abstract
Facial expression is a way of communication that can be used to interact with computers or other electronic devices and the recognition of emotion from faces is an emerging practice with applications in many fields. Many cloud-based vision application programming interfaces are available that recognize emotion from facial images and video. In this article, the performances of two well-known APIs were compared using a public dataset of 980 images of facial emotions. For these experiments, a client program was developed that iterates over the image set, calls the cloud services, and caches the results of the emotion detection for each image. The performance was evaluated in each class of emotions using prediction accuracy. It has been found that the prediction accuracy for each emotion varies according to the cloud service being used. Similarly, each service provider presents a strong variation of performance according to the class being analyzed, as can be seen in more detail in these articles.

2024

Review of Platforms and Frameworks for Building Virtual Assistants

Autores
Pereira, R; Lima, C; Reis, A; Pinto, T; Barroso, J;

Publicação
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 3, WORLDCIST 2023

Abstract
Virtual assistants offer a new type of solution to handle interaction between human and machine and can be applied in various business contexts such as Industry or Education. When designing and building a virtual assistant the developers must ensure a set of parameters to achieve a good solution. Various platforms and frameworks emerged to allow developers to create virtual assistant solutions easier and faster. This paper provides a review of available platforms and frameworks used by authors to create their own solutions in different areas. Big tech companies like Google with Dialogflow, IBM with Watson Assistant and Microsoft with Bot Framework, present mature solutions to build virtual assistants that provide to the developer all components of the basic architecture to build a fast and solid solution. Open-Source solutions focus on providing to the developer the main components to build a virtual assistant, namely language understanding and response generation.

2024

Data governance & quality management-Innovation and breakthroughs across different fields

Autores
Bernardo, BMV; Sao Mamedeb, H; Barroso, JMP; dos Santos, VMPD;

Publicação
JOURNAL OF INNOVATION & KNOWLEDGE

Abstract
In today's rapidly evolving digital landscape, the substantial advance and rapid growth of data presents companies and their operations with a set of opportunities from different sources that can profoundly impact their competitiveness and success. The literature suggests that data can be considered a hidden weapon that fosters decision-making while determining a company's success in a rapidly changing market. Data are also used to support most organizational activities and decisions. As a result, information, effective data governance, and technology utilization will play a significant role in controlling and maximizing the value of enterprises. This article conducts an extensive methodological and systematic review of the data governance field, covering its key concepts, frameworks, and maturity assessment models. Our goal is to establish the current baseline of knowledge in this field while providing differentiated and unique insights, namely by exploring the relationship between data governance, data assurance, and digital forensics. By analyzing the existing literature, we seek to identify critical practices, challenges, and opportunities for improvement within the data governance discipline while providing organizations, practitioners, and scientists with the necessary knowledge and tools to guide them in the practical definition and application of data governance initiatives. (C) 2024 The Author(s). Published by Elsevier Espana, S.L.U. on behalf of Journal of Innovation & Knowledge.

2024

Forest Fire Risk Prediction Using Machine Learning

Autores
Vilaças Nogueira, JD; Solteiro Pires, EJ; Reis, A; Moura Oliveira, PBd; Pereira, A; Barroso, J;

Publicação
The 19th International Conference on Soft Computing Models in Industrial and Environmental Applications SOCO 2024 - Salamanca, Spain, October 9-11, 2024 Proceedings, Volume 2

Abstract
With the serious danger to nature and humanity that forest fires are, taken into consideration, this work aims to develop an artificial intelligence model capable of accurately predicting the forest fire risk in a certain region based on four different factors: temperature, wind speed, rain and humidity. Thus, three models were created using three different approaches: Artificial Neural Networks (ANN), Random Forest (RF), and K-Nearest Neighbor (KNN), and making use of an Algerian forest fire dataset. The ANN and RF both achieved high accuracy results of 97%, while the KNN achieved a slightly lower average of 91%. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Exploring Clustering to Improve Interpretability in Complex Energy Forecasting Models

Autores
Teixeira, B; Valina, L; Pinto, T; Reis, A; Barroso, J; Vales, Z;

Publicação
2024 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES, SEST 2024

Abstract
Explainable Artificial Intelligence (XAI) aims to enhance the interpretability of Artificial Intelligence (AI) systems for humans. The goal is to ensure that algorithmic decisions and underlying data are understandable to non-technical stakeholders. Advanced Machine Learning (ML) models, such as deep neural networks, enable AI systems to process vast data and extract intricate patterns, akin to the human brain, but this complicates XAI development. Complex ML models require substantial data for training, exacerbating the challenge. Consequently, this paper proposes a novel approach to improve XAI for complex ML models, particularly those with large data needs. Using K-Means clustering, the paper proposes to identify relevant data instances to create similarity clusters. This filtering process focuses XAI on essential information, even with complex models, reducing the data set to find patterns and explanations, so that, using the same approach, only the best explanations are filtered efficiently. The paper proposes to implement and test this model with a case study on ML for PV generation forecasting in buildings. Results show that the proposed approach is able to generate explanations that are very similar to those generated when using the entire available data, in only a portion of the execution time, leveraging from the identification of a small number of representative data points. This approach, therefore, enhances the efficiency of XAI by achieving promising results with a smaller dataset. It also facilitates the development of more understandable and fastly provided solutions, which is essential for real-world XAI users such as electric mobility users that need PV forecasting explanations as support for their vehicles charging management.

2024

Smart Environments Based on Peer-to-Peer oneM2M IoT Standard: Preliminary Results

Autores
Costa, N; Barroso, J; Pereira, AMJ;

Publicação
PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE DEVELOPMENT AND TECHNOLOGIES FOR ENHANCING ACCESSIBILITY AND FIGHTING INFO-EXCLUSION, DSAI 2024

Abstract
Traditionally, there are two main market designs for user connected smart objects and smart appliances: cloud dependent and/or local centralized servers but both approaches bring concerns to the enduser side. The cloud-based approach raises concerns related with (apart from technical configuration and setup) security and privacy as user data may be exchanged with the cloud. Even in solutions that keep user data in the user side raises doubts and uncertainty to the final-user. On the other hand, the solutions based on local server may mitigate the security and privacy concerns but usually require end-user technical configuration and setup besides the fact that the local server becomes a single point of failure. Our aim is to address these concerns by the adoption of a peerto-peer, self-contained and interoperable approach to ensure truly plug-and-play, to keep user data in the user side and to allow seamlessly interoperability among end-users' devices hence towards real Smart Environments. In this first paper we evaluate, for the first time, the oneM2M world wide IoT standard over peer-to-peer networking and the preliminary results are very promising, allowing us to move forward addressing other requirements such as IP provisioning, security and privacy, efficient peer discovery, etc.

  • 54
  • 683