Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2024

Sustainable Irrigation Systems in Vineyards: A Literature Review on the Contribution of Renewable Energy Generation and Intelligent Resource Management Models

Autores
Branquinho, R; Briga-Sá, A; Ramos, S; Serôdio, C; Pinto, T;

Publicação
ELECTRONICS

Abstract
Agriculture being an essential activity sector for the survival and prosperity of humanity, it is fundamental to use sustainable technologies in this field. With this in mind, some statistical data are analyzed regarding the food price rise and sustainable development indicators, with a special focus on the Portugal region. It is determined that one of the main factors that influences agriculture's success is the soil's characteristics, namely in terms of moisture and nutrients. In this regard, irrigation processes have become indispensable, and their technological management brings countless economic advantages. Like other branches of agriculture, the wine sector needs an adequate concentration of nutrients and moisture in the soil to provide the most efficient results, considering the appropriate and intelligent use of available water and energy resources. Given these facts, the use of renewable energies is a very important aspect of this study, which also synthesizes the main irrigation methods and examines the importance of evaluating the evapotranspiration of crops. Furthermore, the control of irrigation processes and the implementation of optimization and resource management models are of utmost importance to allow maximum efficiency and sustainability in this field.

2024

Solar Intensity Classification with Imbalanced Data

Autores
Teixeira, I; Baptista, J; Pinto, T;

Publicação
Lecture Notes in Networks and Systems

Abstract
In recent years, there has been a significant growth in the use of technologies that rely on natural resources (wind, solar, etc.) as primary sources of energy. The generation originating from renewable sources brings an increased need for adaptation in power electrical systems. Predicting the amount of energy produced by these technologies is a complex task due to the uncertainty associated with natural resources. This uncertainty hinders decision-making, both at the system level and for consumers themselves who are increasingly using this type of technology for self-consumption. This study focuses on classifying solar intensity using imbalanced data, which means that some of the data categories are more prevalent than others. Oversampling techniques are be employed to increase the amount of data, thereby allowing for balanced training data and improving the performance of prediction models. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

2024

Synthetic Data Generation Models for Time Series: A Literature Review

Autores
Viana, D; Teixeira, R; Baptista, J; Pinto, T;

Publicação
International Conference on Electrical, Computer and Energy Technologies, ICECET 2024, Sydney, Australia, July 25-27, 2024

Abstract
This article presents a comprehensive state of the art analysis of the challenging domain of synthetic data generation. Focusing on the problem of synthetic data generation, the paper explores various difficulties that are identified, especially in real-world problems such as those is the scope of power and, energy systems, including the amount of data, data privacy concerns, temporal considerations, dynamic generation, delays, and failures. The investigation delves into the multifaceted nature of the challenges presented by these factors in the synthesis process. The review thoroughly examines different models used in synthetic data generation, covering Generative Adversarial Networks (GANs), Variational Autoencoder (VAE), Synthetic Minority Oversampling Technique (SMOTE), Data Synthesizer (DS) and E. Non-Parametric SynthPop (SP-NP). Each model is dissected with respect to its advantages, disadvantages, and applicability in different data generation scenarios. Special attention is paid to the nuanced aspects of dynamic data generation and the mitigation of challenges such as delays and failures. The insights drawn from this review contribute to a deeper understanding of the landscape around synthetic data generation, providing a valuable resource for researchers, practitioners, and stakeholders who aim to harness the potential of synthetic data in addressing real-world data challenges. The paper concludes by outlining possible avenues for future research and development in this ever-evolving field. © 2024 IEEE.

2024

Generative Adversarial Networks for Synthetic Meteorological Data Generation

Autores
Viana, D; Teixeira, R; Soares, T; Baptista, J; Pinto, T;

Publicação
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part II

Abstract
This study explores models for synthetic data generation of time series. In order to improve the achieved results, i.e., the data generated, new ways of improvement are explored and different models of synthetic data generation are compared. The model addressed in this work is the Generative Adversarial Networks (GANs), known for generating data similar to the original basis data through the training of a generator. The GANs are applied using the datasets of Quinta de Santa Bárbara and the Pinhão region, with the main variables being the Average temperature, Wind direction, Average wind speed, Maximum instantaneous wind speed and Solar radiation. The model allowed to generate missing data in a given period and, in turn, enables to analyze the results and compare them with those of a multiple linear regression method, being able to evaluate the effectiveness of the generated data. In this way, through the study and analysis of the GANs we can see if the model presents effectiveness and accuracy in the synthetic generation of meteorological data. With the proper conclusions of the results, this information can be used in order to improve the search for different models and the ability to generate synthetic time series data, which is representative of the real, original, data. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

An Interactive Game for Improved Driving Behaviour Experience and Decision Support

Autores
Penelas, G; Pinto, T; Reis, A; Barbosa, L; Barroso, J;

Publicação
HCI International 2024 - Late Breaking Papers - 26th International Conference on Human-Computer Interaction, HCII 2024, Washington, DC, USA, June 29 - July 4, 2024, Proceedings, Part VIII

Abstract
This paper presents an interactive game designed to improve users’ experience related to driving behaviour, as well as to provide decision support in this context. This paper explores machine learning (ML) methods to enhance the decision-making and automation in a gaming environment. It examines various ML strategies, including supervised, unsupervised, and Reinforcement Learning (RL), emphasizing RL’s effectiveness in interactive environments and its combination with Deep Learning, culminating in Deep Reinforcement Learning (DRL) for intricate decision-making processes. By leveraging these concepts, a practical application considering a gaming scenario is presented, which replicates vehicle behaviour simulations from real-world driving scenarios. Ultimately, the objective of this research is to contribute to the ML and artificial intelligence (AI) fields by introducing methods that could transform the way player agents adapt and interact with the environment and other agents decisions, leading to more authentic and fluid gaming experiences. Additionally, by considering recreational and serious games as case studies, this work aims to demonstrate the versatility of these methods, providing a rich, dynamic environment for testing the adaptability and responsiveness, while can also offer a context for applying these advancements to simulate and solve real-world problems in the complex and dynamic domain of mobility. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Enhanced User Interaction in Mobility Decision Support Using Explainable Artificial Intelligence

Autores
Valina, L; Teixeira, B; Pinto, T; Vale, Z; Coelho, S; Fontes, S; Reis, A;

Publicação
HCI International 2024 - Late Breaking Papers - 26th International Conference on Human-Computer Interaction, HCII 2024, Washington, DC, USA, June 29 - July 4, 2024, Proceedings, Part II

Abstract
Artificial Intelligence (AI) is now ubiquitous in daily life, significantly impacting society by supporting decision-making. However, in many application areas, understanding the rationale behind AI decisions is crucial, highlighting the need for explainable AI (XAI). AI algorithms often lack transparency, making it hard to understand their inner workings. This work presents an overview of XAI solutions for decision support in mobility context. It addresses the complexity of explaining decision support models by offering explanations in various formats tailored to different user profiles. By integrating language models, XAI models may generate texts with varying technical detail levels, aiding ethical AI deployment and bridging the gap between complex models and human interpretability. This work explores the need for flexible explanation formats, supporting varied user profiles with graphical, textual, and tabular explanations. By integrating natural language processing models personalized explanations that are accurate, understandable, and accessible to a diverse audience can be generated. This study ultimately aims to support the task of making XAI robust and user-friendly, boosting its widespread use and application. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

  • 49
  • 658