2019
Autores
Jozi, A; Pinto, T; Praça, I; Vale, Z;
Publicação
Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018
Abstract
This paper presents a Support Vector Machine (SVM) based approach for energy consumption forecasting. The proposed approach includes the combination of both the historic log of past consumption data and the history of contextual information. By combining variables that influence the electrical energy consumption, such as the temperature, luminosity, seasonality, with the log of consumption data, it is possible for the proposed method by find patterns and correlations between the different sources of data and therefore improves the forecasting performance. A case study based on real data from a pilot microgrid located at the GECAD campus in the Polytechnic of Porto is presented. Data from the pilot buildings are used, and the results are compared to those achieved by several states of the art forecasting approaches. Results show that the proposed method can reach lower forecasting errors than the other considered methods. © 2018 IEEE.
2019
Autores
Jozi, A; Pinto, T; Marreiros, G; Vale, Z;
Publicação
2019 IEEE Milan PowerTech, PowerTech 2019
Abstract
The rising needs for increased energy efficiency and better use of renewable energy sources bring out the necessity for improved energy management and forecasting models. Electricity consumption, in particular, is subject to large variations due to the effect of multiple variables, such as the temperature, luminosity or humidity, and of course, consumers' habits. Current forecasting models are not able to deal adequately with the influence and correlation between the multiple involved variables. Hence, novel, adaptive forecasting models are needed. This paper presents a novel approach based on multiple artificial intelligence-based forecasting algorithms. The considered algorithms are artificial neural networks, support vector machines hybrid fuzzy inference systems, Wang and Mendel's fuzzy rule learning method and a genetic fuzzy system for fuzzy rule learning based on the MOGUL methodology. These algorithms are used to forecast the electricity consumption of a real office building, using multiple input variables and consumption disaggregation. © 2019 IEEE.
2019
Autores
Nascimento, J; Pinto, T; Vale, Z;
Publicação
2019 IEEE Milan PowerTech, PowerTech 2019
Abstract
Electricity markets are complex environments with very dynamic characteristics. The large-scale penetration of renewable energy sources has brought an increased uncertainty to generation, which is consequently, reflected in electricity market prices. In this way, novel advanced forecasting methods that are able to predict electricity market prices taking into account the new variables that influence prices variation are required. This paper proposes a new model for day-ahead electricity market prices forecasting based on the application of an artificial neural network. The main novelty of this paper relates to the pre-processing phase, in which the relevant data referring to the different variables that have a direct influence on market prices such as generation, temperature, consumption, among others, is analysed. The association between these variables is performed using spearman correlation, from which results the identification of which data has a larger influence on the market prices variation. This pre-analysis is then used to adapt the training process of the artificial neural network, leading to improved forecasting results, by using the most relevant data in an appropriate way. © 2019 IEEE.
2019
Autores
Gomes, L; Sousa, F; Pinto, T; Vale, Z;
Publicação
ENERGIES
Abstract
Smart home devices currently available on the market can be used for remote monitoring and control. Energy management systems can take advantage of this and deploy solutions that can be implemented in our homes. One of the big enablers is smart plugs that allow the control of electrical resources while providing a retrofitting solution, hence avoiding the need for replacing the electrical devices. However, current so-called smart plugs lack the ability to understand the environment they are in, or the electrical appliance/resource they are controlling. This paper applies environment awareness smart plugs (EnAPlugs) able to provide enough data for energy management systems or act on its own, via a multi-agent approach. A case study is presented, which shows the application of the proposed approach in a house where 17 EnAPlugs are deployed. Results show the ability to shared knowledge and perform individual resource optimizations. This paper evidences that by integrating artificial intelligence on devices, energy advantages can be observed and used in favor of users, providing comfort and savings.
2019
Autores
Faia, R; Pinto, T; Vale, Z; Corchado, JM; Soares, J; Lezama, F;
Publicação
Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018
Abstract
The use of metaheuristics to solve real-life problems has increased in recent years since they are easy to implement, and the problems become easy to model when applying metaheuristic approaches. However, arguably the most important aspect is the simulation time since results can be obtained from metaheuristic methods in a much smaller time, and with a good approximation to the results obtained with exact methods. In this work, the Genetic Algorithm (GA) metaheuristic is adapted and apphed to solve the optimization of electricity markets participation portfolios. This work considers a multiobjective model that incorporates the calculation of the profit and the risk incurred in the electricity negotiations. Results of the proposed approach are compared to those achieved with an exact method, and it can be concluded that the proposed GA model can achieve very close results to those of the deterministic approach, in much quicker simulation time. © 2018 IEEE.
2019
Autores
Rodriguez Fernandez, J; Pinto, T; Silva, F; Praca, I; Vale, Z; Corchado, JM;
Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
Abstract
Automated negotiation plays a crucial role in the decision support for bilateral energy transactions. In fact, an adequate analysis of past actions of opposing negotiators can improve the decision-making process of market players, allowing them to choose the most appropriate parties to negotiate with in order to increase their outcomes. This paper proposes a new model to estimate the expected prices that can be achieved in bilateral contracts under a specific context, enabling adequate risk management in the negotiation process. The proposed approach is based on an adaptation of the Q-Learning reinforcement learning algorithm to choose the best scenario (set of forecast contract prices) from a set of possible scenarios that are determined using several forecasting and estimation methods. The learning process assesses the probability of occurrence of each scenario, by comparing each expected scenario with the real scenario. The final chosen scenario is the one that presents the higher expected utility value. Besides, the learning method can determine which is the best scenario for each context, since the behaviour of players can change according to the negotiation environment. Consequently, these conditions influence the final contract price of negotiations. This approach allows the supported player to be prepared for the negotiation scenario that is the most probable to represent a reliable approximation of the actual negotiation environment.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.