Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CAP

2014

Simultaneous strain and temperature measure based on a single suspended core photonic crystal fiber

Autores
Rota Rodrigo, S; Lopez Amo, M; Kobelke, J; Schuster, K; Santos, JL; Frazao, O;

Publicação
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
In this work a simultaneous strain and temperature sensor based on a suspended core fiber is proposed. The sensor comprises a 3mm suspended core PCF between SMFs and is based on the combination of two multimodal interferences with different frequency fringe patterns. The interference of the both signal has different sensitivity responses to strain and temperature. Thought a low-pass frequency filtering of the detected spectrum, the wavelength shift of the two interferences can be measured allowing the discrimination of strain and temperature simultaneously. The resolutions of this sensor are 0.45 degrees C and 4.02 mu epsilon.

2014

Reflection-Based Phase-Shifted Long-Period Fiber Grating for Cryogenic Temperature Measurements

Autores
Martins, R; Monteiro, J; Caldas, P; Santos, JL; Rego, G;

Publicação
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
In this work, we propose a compact sensor head to perform cryogenic temperature measurements based on a long-period fiber grating. The presented configuration enables the sensor to be interrogated in reflection since a phase-shifted is produced by Fresnel reflection on the end-face of the fiber, cleaved at a quarter-period separation distance from the end of the grating.

2014

Fiber Optic Sensing System for Monitoring of Coal Waste Piles in Combustion

Autores
Viveiros, D; Ribeiro, J; Carvalho, JP; Ferreira, J; Pinto, AMR; Perez Herrera, RA; Diaz, S; Lopez Gil, A; Dominguez Lopez, A; Esteban, O; Martins, HF; Martin Lopez, S; Baierl, H; Auguste, JL; Jamier, R; Rougier, S; Santos, JL; Flores, D; Roy, P; Gonzalez Herraez, M; Lopez Amo, M; Baptista, JM;

Publicação
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
The combustion of coal wastes resulting from mining is of particular environmental concern and therefore the importance of the proper management involving real-time assessment of their status and identification of probable evolution scenarios is recognized. Continuous monitoring of combustion temperature and emission levels of certain gases opens the possibility to plan corrective actions to minimize their negative impact in the surroundings. Optical fiber technology is well-suited to this purpose and in this work it is described the main attributes of a fiber optic sensing system projected to gather data on distributed temperature and gas emission in these harsh environments.

2014

Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application

Autores
Sadeghi, J; Latifi, H; Santos, JL; Chenari, Z; Ziaee, F;

Publicação
APPLIED PHYSICS LETTERS

Abstract
Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5 x 10(-5) nm/psi at 1480 nm to 1.3 x 10(-3) nm/psi at 1680 nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000 psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from -3.4 x 10(-6) 1/psi to -1.3 x 10(- 6) 1/psi and from -5 x 10(-6) 1/psi to -1.8 x 10(-6) 1/psi, respectively, which were in a good accordance with each other. (C) 2014 AIP Publishing LLC.

2014

Phase-shifted fiber Bragg grating for strain measurement at extreme conditions

Autores
Ferreira, MS; Lee, GCB; Santos, JL; Sugden, K; Frazão, O;

Publicação
Optical Sensors, 2014

Abstract
In this work, a phase-shifted fiber Bragg grating is proposed for strain sensing at extreme temperatures. The grating structure is written in bare standard single mode fiber, using the point-by-point femtosecond laser technique. Strain measurements are performed at temperatures ranging from room temperature up to 900°C. By subjecting the sensor to such extreme conditions, the wavelength of the grating increases. © 2014 OSA.

2014

An Adjustable Sensor Platform Using Dual Wavelength Measurements For Optical Colorimetric Sensitive Films

Autores
Machado, C; Gouveia, C; Ferreira, J; Kovacs, B; Jorge, P; Lopes, L;

Publicação
2014 IEEE SENSORS

Abstract
We present a new and versatile sensor platform to readout the response of sensitive colorimetric films. The platform is fully self-contained and based on a switched dual-wavelength scheme. After filtering and signal processing, the system is able to provide self-referenced measures of color intensity changes in the film, while being immune to noise sources such as ambient light and fluctuations in the power source and in the optical path. By controlling the power and the switching frequency between the two wavelengths it is possible to fine tune the output gain as well as the operational range of the sensor for a particular application, thus improving the signal conditioning. The platform uses a micro-controller that complements the analog circuit used to acquire the signal. The latter pre-amplifies, filters and conditions the signal, leaving the micro-controller free to perform sensor linearization and unit conversion. By changing the sensitive film and the wavelength of the light source it is possible to use this platform for a wide range of sensing applications.

  • 96
  • 229