2015
Autores
Vilela J.; Coelho L.; de Almeida J.M.M.M.;
Publicação
Cogent Food and Agriculture
Abstract
Fourier transform infrared spectroscopy based on attenuated total reflectance sampling technique, combined with multivariate analysis methods was used to monitor the adulteration of pure sunflower oil (SO) with thermally deteriorated oil (TDO). Contrary to published research, in this work, SO was thermally deteriorated in the absence of foodstuff. SO samples were exposed to temperatures between 125 and 225°C from 6 to 24 h. Quantification of adulteration of SO with TDO, based on principal components regression (PCR), partial least squares regression (PLS-R), and linear discriminant analysis (LDA) applied to mid-infrared spectra and to their first and second derivatives is reported for the first time. Infrared frequencies associated with the biochemical differences between TDO samples deteriorated in different conditions were investigated by principal component analysis (PCA). LDA was effective in the twofold classification presence/absence of TDO in adulterated SO (with 5% V/V of less of TDO). It provided 93.7% correct classification for the calibration set and 91.3% correct classification when cross-validated. A detection limit of 1% V/V of TDO in SO was determined. Investigation of an external set of samples allowed the evaluation of the predictability of the models. The regression coefficient (R 2) for prediction was 0.95 and 0.96 and the RMSE was 2.1 and 1.9% V/V when using the PCR or PLS-R models, respectively, and the first derivative of spectra. To the best of our knowledge, no investigation of adulteration of SO with TDO based on PCR, PLS-R, and LDA has been reported so far.
2015
Autores
Machado, M; Machado, N; Gouvinhas, I; Cunha, M; de Almeida, JMMM; Barros, AIRNA;
Publicação
FOOD ANALYTICAL METHODS
Abstract
The phenolic compound concentration of olives and olive oil is typically quantified using HPLC; however, this process is expensive and time consuming. The purpose of this work was to evaluate the potential of Fourier transform infrared (FTIR) spectroscopy combined with chemometrics, as a rapid tool for the quantitative prediction of phenol content and antioxidant activity in olive fruits and oils from "Cobran double dagger osa" cultivar. Normalized spectral data using standard normal variate (SNV) and first and second Savitzky-Golay derivatives were used to build calibration models based on principal component regression (PCR) and on partial least squares regression (PLS-R), the performance of both models have been also compared. It was shown the possibility of establishing optimized regression models using the combined frequency regions of 3050-2750 and 1800-790 cm(-1) instead of the full mid-infrared spectrum was shown. It was concluded that, in general, the first derivative of data and PLS-R models offered enhanced results. Low root-mean-square error (RMSE) and high correlation coefficients (R (2)) for the calibration and for the validation sets were obtained.
2015
Autores
Gouvinhas, I; de Almeida, JMMM; Carvalho, T; Machado, N; Barros, AIRNA;
Publicação
FOOD CHEMISTRY
Abstract
A methodology based on Fourier transform infrared (FTIR) spectroscopy, combined with multivariate analysis methods, was applied in order to monitor extra virgin olive oils produced from three distinct cultivars on different maturation stages. For the first time, this kind of methodology is used for the simultaneous discrimination of the maturation stage, and different cultivars. Principal component analysis and discriminant analysis were utilised to create a model for the discrimination of olive oil samples. Partial least squares regression was employed to design calibration models for the determination of chemical parameters. The performance of these models was based on the multiple coefficient of determination (R-2), the root mean square error of calibration (RMSEC) and root mean square error of cross validation (RMSECV). The prediction models for the chemical parameters resulted in a R-2 ranged from 0.93 to 0.99, a RMSEC ranged from 1% to 4% and a RMSECV from 2% to 5%. It has been shown that this kind of approach allows to distinguish the different cultivars, and to clearly discern the different maturation stages, in each one of these distinct cultivars. Furthermore, the results demonstrated that FTIR spectroscopy in tandem with chemometric techniques allows the creation of viable and accurate models, suitable for correlating the data collected by FTIR spectroscopy, with the chemical composition of the EVOOs, obtained by standard methods.
2015
Autores
Gouvinhas, I; Machado, N; Carvalho, T; de Almeida, JMMM; Barros, AIRNA;
Publicação
TALANTA
Abstract
Extra virgin olive oils produced from three cultivars on different maturation stages were characterized using Raman spectroscopy. Chemometric methods (principal component analysis, discriminant analysis, principal component regression and partial least squares regression) applied to Raman spectral data were utilized to evaluate and quantify the statistical differences between cultivars and their ripening process. The models for predicting the peroxide value and free acidity of olive oils showed good calibration and prediction values and presented high coefficients of determination ( > 0.933). Both the R-2, and the correlation equations between the measured chemical parameters, and the values predicted by each approach are presented; these comprehend both PCR and PLS, used to assess SNV normalized Raman data, as well as first and second derivative of the spectra. This study demonstrates that a combination of Raman spectroscopy with multivariate analysis methods can be useful to predict rapidly olive oil chemical characteristics during the maturation process.
2015
Autores
Fernandez Garcia, MP; Teixeira, JM; Machado, P; Oliveira, MRFF; Maia, JM; Pereira, C; Pereira, AM; Freire, C; Araujo, JP;
Publicação
REVIEW OF SCIENTIFIC INSTRUMENTS
Abstract
The main purpose of this work was to design, develop, and construct a simple desktop AC susceptometer to monitor in situ and in real time the coprecipitation synthesis of magnetic nanoparticles. The design incorporates one pair of identical pick-up sensing coils and one pair of Helmholtz coils. The picked up signal is detected by a lock-in SR850 amplifier that measures the in-and out-of-phase signals. The apparatus also includes a stirrer with 45 degrees-angle blades to promote the fast homogenization of the reaction mixture. Our susceptometer has been successfully used to monitor the coprecipitation reaction for the synthesis of iron oxide nanoparticles. (C) 2015 AIP Publishing LLC.
2015
Autores
Mendes, JP; Esperanca, JMSS; Esteves, AP; Silva, MM; Medeiros, MJ;
Publicação
ECS Transactions
Abstract
We investigated the reductive intramolecular cyclization of bromopropargyl ethers derivatives, catalyzed by electrogenerated (1,4,8,11-tetramethyl-1,4,8,11-tetraaza-cyclotetradecane)nickel(I), [Ni(tmc)]+ as the catalysts in N,N,N-trimethyl-N-(2- hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide,[N
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.