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Abstract. High-level synthesis (HLS) is of paramount importance to
enable software developers to map critical computations to FPGA-based
hardware accelerators. However, in order to generate efficient hardware
accelerators one needs to apply significant code transformations and ade-
quately use the directive-driven approach, part of most HLS tools. The
code restructuring and directives needed are dependent not only of the
characteristics of the input code but also of the HLS tools and target
FPGAs. These aspects require a deep knowledge about the subjects
involved and tend to exclude software developers. This paper presents our
recent approach for automatic code restructuring targeting HLS tools.
Our approach uses an unfolded graph representation, which can be gener-
ated from program execution traces, and graph-based optimizations, such
as folding, to generate suitable HLS C code. In this paper, we describe
the approach and the new optimizations proposed. We evaluate the app-
roach with a number of representative kernels and the results show its
capability to generating efficient hardware implementations only achiev-
able using manual restructuring of the input software code and manual
insertion of adequate HLS directives.

Keywords: Software code restructuring · HLS ·
Graph transformations · FPGA · Hardware accelerators

1 Introduction

Field-programmable gate arrays (FPGAs) can provide efficient hardware accel-
erators. Their use can contribute to the performance improvements and energy
efficiency needed in many computing systems (see e.g., [1]), from embedded to
high-performance computing systems. Custom hardware implementations pro-
vide concurrent execution of many independent operations, thereby improving
the execution of algorithms with high operation-, data- and task-level paral-
lelism. In order to design efficient hardware accelerators, one must have specific
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skills and understand very distinct programming languages and tools than a
typical software developer. Additionally, hardware design is still a very error-
prone and time-consuming task. As these aspects impose substantial barriers
to use FPGAs as accelerators, many efforts in high-level synthesis (HLS) focus
on improvements in terms of the use of FPGAs by developers (including soft-
ware programmers) by providing higher abstraction levels and the use of typical
software programming languages.

The high-level of abstraction provided by HLS tools thus intends to allow
developers to program FPGAs more easily and be able to handle more complex
applications, without the long time efforts needed by typical hardware design.
Even thought most HLS tools start from software programming languages, they
still require hardware expertise to generate efficient hardware. For example, the C
programming language is a common input for many HLS tools [1]. However, the
C programming model is tailored to CPUs and does not consider the concurrent
nature of hardware and the possible customization. HLS tools circumvent these
limitations by allowing programmers to guide the synthesis through directives.
Nonetheless, the structure of the code has a large impact on the performance
of the generated hardware via HLS [2]. Complex code restructuring is usually
required and HLS tools and compilers may neither provide such optimizations
nor ensure their automatic application. As it is well known that current HLS
tools still have a barrier of entry for software programmers, by lowering this
barrier more developers will be able to use the computing power of FPGAs, e.g.,
to accelerate applications. In order to make C-based HLS more accessible, we
need a way to easily restructure the input software code.

This paper presents an approach to automatically restructure C code tar-
geting HLS for FPGAs. Our approach is based on a dataflow graph (DFG),
currently generated from execution traces of the input critical function, and on
graph transformations, such as folding and unfolding, before generating C code
added with HLS directives. Although a DFG could be generated by compilers,
the current trace-based approach is taken, so that in future work we can also
specialize the hardware generation with the use of runtime information. The
global approach was firstly introduced in [3] and here we describe in more detail
important aspects of the approach and provide useful extensions with significant
impact in the results achieved. The main contributions of this paper are:

– an automatic code restructuring approach based on dataflow graph transfor-
mations and on a framework, partially implementing the approach, tuned to
code restructuring and insertion of HLS directives for FPGA-based accelera-
tors;

– graph-based optimizations allowing the generation of C code and consider-
ing different aspects such as folding/unfolding, loop pipelining, arithmetic
optimizations and array partitioning;

– an evaluation of the approach using a number of kernels and results that
show some advantages of the approach. This includes a comparison to the
optimized code for an SVM implementation provided in [4] and evidence
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of the capability of the approach and current framework to automatically
achieve comparable code restructuring.

This paper is organized as follows. Section 2 presents a motivating example
regarding code restructuring and HLS directives. Section 3 presents our approach
and describes the framework developed to implement and evaluate the approach
and the main optimizations already implemented. In Sect. 4, we show the results
obtained by applying our framework to a number of benchmarks. We present in
Sect. 5 some of the most relevant related work, and we finalize in Sect. 6 with
some concluding remarks and planned future work.

2 Motivating Example

In order to show the possible code restructuring and HLS directives needed to
achieve an efficient hardware accelerator, we show here the C code of the filter
subband function (see Fig. 1), a function present in an MPEG audio encoder [5].
This function consists of a nested loop that calculates y values that are then
used in a second nested loop to calculate the output array s.

void f i l t e r s ubband (double z [Nz ] ,
double s [ Ns ] , double m[Nm] ){
double y [Ny ] ;
int i , j ;
for ( i =0; i<Ny; i++){

y [ i ] = 0 . 0 ;
for ( j =0; j <( int )Nz/Ny ; j++)

y [ i ] += z [ i+Ny j ] ;
}
for ( i =0; i<Ns ; i++){

s [ i ]=0 . 0 ;
for ( j =0; j<Ny; j++)

s [ i ] += m[Ns i+j ] y [ j ] ;
}

}

(a) Original Filter subband source
code

void f i l t e r s ubband p i p e (double z [ 5 1 2 ] ,
double s [ 3 2 ] , double m[1024 ] ){
#pragma HLS a r r a y pa r t i t i o n
va r i ab l e=s c y c l i c f a c t o r=16 dim= 1
#pragma HLS a r r a y pa r t i t i o n
va r i ab l e=z c y c l i c f a c t o r=16 dim= 1
#pragma HLS a r r a y pa r t i t i o n
va r i ab l e=m cy c l i c f a c t o r=64 dim= 1
s [ 0 ]=0 ;

. . .
s [ 31 ]=0 ;

for ( int i =0; i < 64 ; i=i +4){
#pragma HLS p i p e l i n e

part11=z [ i +320] + z [ i +256] ;
part12=z [ i +321] + z [ i +257] ;
part13=z [ i +322] + z [ i +258] ;
part14=z [ i +323] + z [ i +259] ;
. . .
y0=f i n a l p a r t 1 ;
y0 a10=f i n a l p a r t 2 ;
y0 a20=f i n a l p a r t 3 ;
y0 a30=f i n a l p a r t 4 ;
for ( int j =0; j < 32 ; j=j +1){

temp1=m[ ( 32 ) j+i ] y0 ;
temp2=m[ ( 32 ) j+i ] y0 a10 ;
temp3=m[ ( 32 ) j+i ] y0 a20 ;
temp4=m[ ( 32 ) j+i ] y0 a30 ;
p a r t i a l i n 1=temp1+temp2 ;

. . .
f i n a l p a r t i n=par t i n3 + par t i n4 ;
s [ j ]= s [ j ] + f i n a l p a r t i n ;

}
}

}

(b) Filter subband restructured source
code, added with Vivado HLS direc-
tives

*

*
*
*
*

*
*
*
*

*

*

Fig. 1. Filter subband source code considering Nz, Ns, Nm and Ny equal to 512, 32,
1024 and 64, respectively
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Figure 1b shows the C code after code restructuring and insertion of Vivado
HLS directives. This new C code of the filter subband provides an efficient FPGA
implementation. Although this code implements the same algorithm, it has been
restructured substantially and to the best of our knowledge none HLS tool is
able to automatically apply the code restructuring stages needed to achieve the
code presented. The code in Fig. 1b consists of a single nested loop instead of
two nested loop structures. In each iteration of the new outermost loop, four y
values are calculated and then used to calculate values for the output array s. The
array y is promoted to scalar variables. The outermost loop is then pipelined in
hardware due the use of the Vivado HLS pipeline directive. This representation of
the algorithm leads to more efficient implementation than the original (Fig. 1a).
When using the original code, the hardware resultant implementation calculates
all the y values in the first nested loop, stores them in BRAMs, and use them
in the next nested loop.

In the restructured code version, presented in Fig. 1b, the calculated y values
are being used for the calculation of the output array. They can also be concur-
rently calculated in the pipeline, which would not be possible with the previous
representation. Additionally, the calculated y values are used immediately to
calculate the outputs, so they do not need to be stored in memory. Furthermore,
the accumulations are implemented using partial sums that allow for more con-
current summations. Also, array partitioning directives are used to increase the
memory throughput, so that the resultant loop pipelining has a lower initiation
interval (II).

Although both codes implement the same algorithm, the restructured version
generates a more efficient FPGA hardware. In the following section we show how
our framework can automatically generate the C code in Fig. 1b from the C code
in Fig. 1a.

3 Our Approach

Our approach to automatically restructure C code targeting HLS tools is based
on graph transformations. The current implementation of our approach (see
Fig. 2a) consists of two main components: a frontend and a backend. The fron-
tend transforms a given execution trace in a dataflow graph (DFG). Each DFG
is then processed and optimized in a backend that, as final step, generates C
code for a HLS tool.

We chose DFGs for our graph-based approach, as DFGs are tailored to rep-
resent the flow of data and naturally express parallelism, both essential for hard-
ware implementations. Additionally, we focused on a flexible frontend to make
possible the generation of DFGs from multiple input languages as this may allow
programmers of different languages to use C-based HLS tools.

3.1 Frontend

As already mentioned, the frontend of our framework generates a DFG from an
execution trace of the input code. Figure 3 shows a simplified DFG for the Filter
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Fig. 2. Compilation flow of our framework

subband function in Fig. 1. The DFG represents in nodes the operations from
the original execution and in edges the data dependencies between operations.
We kept the frontend as simple and generic as possible in order to address
different input languages. Although our initial frontend was implemented for C
code input, it can be easily ported to other software programming languages.

Our current approach to generate the DFG representing the execution of a
kernel is to write the dot (GraphViz) description to a file at runtime. By injecting
instrumentation code into the original C code (before each statement), compiling
and executing, the input DFG is generated.

3.2 Backend

Currently, the backend consists of seven stages (see Fig. 2b) focused on analysis
and optimizations of the DFG. It implements all the code restructuring, opti-
mizations and insertion of directives for the target HLS tool. The exact opti-
mizations applied depend on the input DFG and on the configurations provided
by users. In a configuration file, users can define the number of simultaneous
load/stores supported by the hardware - important for the tool to explicitly
generate code with a number of load/store statements -, inputs and outputs of
the kernel and optimization options.
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Fig. 3. DFG for the filter subband considering an execution with Nz, Ns, Nm and Ny
equal to 4, 2, 1024, and 2, respectively

The first stage of the backend compacts the graph by pruning unnecessary
nodes and prepares it for the following stages. Afterwards, the tool tries to
obtain improved dataflow representations. Since currently the input DFG is fully
unfolded, it is important to identify repeating patterns that can be folded. As
these patterns may occur multiple times, the tool can optimize a large part of
some applications by improving these patterns. Stage 2 separates the dataflows
that generate each individual output and Stage 3 tries to find matches among
these dataflows. If a repeating pattern is identified, this stage folds them into
a loop that is represented by a dataflow of a single iteration. Stage 4 attempts
to optimize the dataflow by identifying loop pipelining opportunities. Stage 5
applies various optimizations to the DFG and Stage 6 unrolls some of the gen-
erated loops based on the users’ configurations. Finally, Stage 7 generates the C
output code plus the appropriate HLS directives.

3.3 Backend Optimizations

In this subsection we describe in more detail the main backend stages (see
Fig. 2b) that optimize the DFG. We describe Stage 6 before Stage 5 as graph
unfolding has an impact on the graph optimizations.

Sequential Matching (Stage 4). Although the first three stages compact the
DFG, it can still be very large and contain properties to be further explored. In
Stage 4, the tool identifies a potential variable and pipelines the graph along this
variable. This variable is selected by traversing the DFG and identifying which
variable is written more often (an heuristic that attempts to build the longest
pipeline).
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The backend then proceeds to match all the dataflows that generate all the
separate writes of the selected variable. After the tool has obtained the pipelining
structure, it handles dataflows without matches. The tool moves the subgraphs
that represent the dataflow of the pipelining into a “hyper” node (represents a
loop) and all the nodes that do not fit in the pipelining are maintained outside
of this “hyper” node.

Fig. 4. DFG for filter subband after Stage 4 of the tool and considering an execution
with Nz, Ns, Nm and Ny equal to 8, 4, 1024, and 4, respectively

By applying the Stage 4 pipelining to filter subband, the tool obtains the
DFG shown in Fig. 4. The graph is pipelined along the array s. The subgraphs
in Figs. 4b and c represent single iterations of the outer and inner loops of the
pipelining. In each iteration, the outer loop calculates a y value, which is then
used in the inner loop. In the inner loop, each y is used to calculate all the
outputs of the s array. The subgraph in Fig. 4a shows the dataflows that do not
match the pipelining. In this case, they represent the initialization of the s array.

It is through Stage 4 that the tool obtains the improved code structure
depicted in the example in Fig. 1b. By transforming the DFG according to
pipelining, the tool identifies a better structure for the algorithm. By comparing
this DFG to the input DFG seen in Fig. 3, and although the input sizes are dif-
ferent, we can still recognize the patterns that are compacted into the pipelining
in the smaller version of the input DFG.
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Graph Unfolding (Stage 6). Stage 6 is dedicated to unfolding loops that were
generated in stages 3 and 4. Unfolding loops opens new avenues for optimiza-
tions in Stage 5. As mentioned before, compacting the DFG is very efficient for
optimizations, but to take further advantage of Instruction Level Parallelism the
tool needs to unfold some of the loops. Due to the DFG-based approach, the tool
can unfold a loop simply by copying the dataflow multiple times and updating
the indexes of array accesses and appending a label to the new variables.

Fig. 5. Unrolled dataflow of the
inner loop of the pipelined filter
subband of Fig. 4c by a factor of four

The unfolding process starts at the inner-
most loops. After a loop is unrolled the result-
ing dataflow is checked for Stage 5 opti-
mizations, and after these the resulting DFG
returns to Stage 6. The unfolding process
needs to be ordered from innermost to outer-
most loops, because unfolding an inner loop
does not affect the outer loop, but unfolding
an outer loop affects its nested loops. In case
the outer loop is pipelined, the inner loop
is not unrolled as Vivado HLS automatically
unrolls it.

When dealing with inner loops, it is essen-
tial to distinguish which loop to unfold.
Therefore, the tool starts the unrolling trans-
formation with the name, unfolding factor
and loop type of the initial loop. If that loop
has a nested loop, the tool unrolls it and
propagates the name of the outer loop, the
unfolding factor and type. The inner loop is

unrolled based on that inherited information. Thus, if a memory access depends
on the iteration of the inner and outer loop, the tool can correctly identify how
to calculate the index of the new access.

Figure 5 shows the result of unfolding the inner loop of filter subband pipeline
loop shown in Fig. 4. The backend replicates the dataflow, in this case a sum
and a multiplication, and then connects them to maintain the correct dependen-
cies between iterations, resulting in the accumulation chain. It is through this
unfolding the tool obtains the unfolded iterations seen in the code in Fig. 1b.

Dataflow Optimizations (Stage 5). Stage 5 is dedicated to various dataflow
optimizations. Currently, it involves two types of optimizations. One focuses on
arithmetic optimization, such as the accumulation optimization, which restruc-
tures an accumulation as partial sums. The backend substitutes accumulation
chains with the same calculations through balanced trees. The result of the bal-
anced tree is then summed with the starting value of the accumulation. In case
the optimized chain consists of floats or doubles the user would need to verify if
the result is within acceptable accuracy.
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As illustrated in Fig. 5, the first addition depends on the result of the last
sum. Therefore, the next stage of the pipelining can only initiate after the clock
cycles necessary to execute that chain. However, by balancing the chain, the
value calculated in the previous iteration is used only once at the final sum.
Therefore, the pipeline only needs to be delayed for the duration of a single
sum instead of an entire accumulation chain. It is through balancing that we
obtain the partial sums in the motivating example (see Fig. 1b). Vivado HLS
is able to automatically balance operations, but it does not balance floats or
doubles without changing the settings, which would require the knowledge of an
experienced user.

Another arithmetic optimization is applied to divisions. In this case, if at
least one operand is unique to multiple divisions, the tool extends the DFG with
the calculation of its inverse, and substitutes the divisions by multiplications
with the inverse.

The user can also choose to optimize memory accesses. One of the optimiza-
tions is data reuse. The tool analyzes the current loops to identify if there are
redundant memory accesses between two consecutive iterations of a loop. If the
same memory location is also accessed in the next iteration of a loop, the tool
uses buffers to store values between iterations, reducing the number of memory
reads. This can greatly minimize the memory bottlenecks of certain applications.

Another optimization the user can choose to diminish memory bottlenecks is
the full partitioning of arrays. This optimization can be applied through array
partitioning directives provided by HLS tools. If the user chooses to fully parti-
tioning the arrays, the tool makes a final pass through the whole DFG. Based on
the number of separate concurrent accesses, the tool sets the appropriate array
partitioning factor so that the maximum number of concurrent accesses detected
can be scheduled in a single cycle. This optimization can significantly increase
the resource usage. First by using more BRAMs. Second by lowering the mem-
ory bottleneck more operations can be executed in parallel. This optimization
does not change the structure of the graph, it only leads to different directives.
When applied to the filter subband function, this optimization injects the array
partitioning directives included in the motivating example (see Fig. 1b).

4 Experimental Results

This section presents some experimental results achieved by our framework. The
benchmarks used represent DSP algorithms and are either from the DSPLIB
from Texas Instruments [5], the UTDSP Benchmark Suite [6] or from an MPEG
audio encoder [7]. dotproduct and Autocorrelation are from DSPLIB. 1D fir is
a typical code implementing a FIR filter with N taps. filter subband is from
an MPEG audio encoder. 2D Convolution is the largest benchmark and is a
kernel that performs a 2D convolution, which is part of the Sobel edge detection
benchmark provided in UTDSP. The source code used for the SVM kernel is
from [4].
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Table 1. Framework optimization levels

Optimization
level

Brief description

01 None of the optimizations

02 DFG is folded as much as possible, and unfolded according to
user configurations

03 Adds array partitioning to level 02 to complement the
unfolded DFG

04 Adds data reuse to level 03

05 Adds arithmetic optimizations to level 03

06 Adds arithmetic optimizations to level 04

07 Adds full array partitioning optimization from Stage 5 to level
05

08 Adds full array partitioning optimization from Stage 5 to level
06

Table 2. Versions of input code used for comparisons

Comparison code Brief description

C Original code without any modifications

C-inter Input code optimized with basic directives such as the pipeline
directive

C-high Improve the C-inter implementation with unroll and memory
partitioning directives

We analyze the effectiveness of our tool for multiple optimization levels as
depicted in Table 1. The C code baselines are briefly summarized in Table 2. It
is a fair assumption that a typical software programmer could use a number
of very basic directives, but is not proficient with all types of directives. This
approach to the evaluation allows us to study the effectiveness of our tool when
comparing to different levels of hardware design knowledge.

Table 3. Resource usage for fastest optimization levels up to level 04 and Level 08

Benchmark LUT FF DSP BRAM LUT FF DSP BRAM

filter subband 12605 18849 59 0 47537 42589 118 0

Autocorrelation 9083 7277 160 0 8025 7114 160 0

dotproduct 294 581 8 0 294 581 8 0

1D fir 4587 6579 192 0 4297 5641 192 0

2D Convulution 5354 6575 54 0 6376 3408 57 0

SVM 9228 9068 56 68 14203 12506 91 76
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Table 4. Speedups for fastest optimization levels up to level 04 and Level 08

Benchmark Latency Period

(ns)

Speedup

C

Speedup

C-inter

Speedup

C-high

Latency Period

(ns)

Speedup

C

Speedup

C-inter

Speedup

C-high

filter subband 563 18.34 39.60 2.81 2.81 293 17.09 81.66 5.79 5.79

Autocorrelation 96 8.6 49.6 16.4 7.91 16 8.6 297.7 98.6 47.5

dotproduct 255 8.93 16.81 5.61 1.00 255 8.93 16.81 5.61 1.00

1D fir 135 8.74 211 26.7 14.4 120 8.74 237.3 30 16.2

2D Convulution 8563 8.74 34.5 2.25 1.36 3886 8.74 76.1 5 3

SVM 11365 9.38 31 0.9 0.9 3208 8.4 123.4 3.5 3.5

Speedups and FPGA resource values are obtained through synthesizing
the C code with Vivado HLS 2017.4 [8], in a PC with an Intel Core i7-7700
with 32 GB RAM, and targeting a Xilinx Artix™-7 FPGA (xc7z020clg484-1).
All of the benchmarks had a time constraint of 10 ns except filter subband, which
has a constraint of 20 ns. The total time of each hardware implementation is cal-
culated by multiplying the minimum clock period reported and the latency. The
speedups are the result of dividing the total time of the implementations from
Table 2 by the total time of the implementations from code generated with dif-
ferent framework optimizations levels.

Tables 3 and 4 show the results presented in [3], which considered 04 as the
highest level. Level 03 achieves the fastest implementations for the filter subband
and dotproduct. The remaining benchmarks achieve the fastest implementations
at Level 04. The results showed that it was essential to reduce the memory
bottleneck to increase the throughput of the implementations. Those results
also show that just through folding and unfolding the input DFG, the result-
ing implementation was already faster for Autocorrelation and filter subband.
Overall, the results show the benefits of our approach in terms of speedups and
the enhancements when adding the optimizations (arithmetic optimizations and
array partitioning) proposed in this paper.

Tables 3 and 4 also present the results from the synthesis reports of Vivado
HLS for the benchmarks, considering the manually improved C versions and
the C code automatically generated using our tool, with optimization levels
between 05 and 08. With more optimizations it is possible to achieve higher
speedups for every benchmark with the exception of dotprod. For filter subband,
the highest speedup was achieved at Level 07 with 5.8× and 81.7× compared
with C-high and C, respectively. This is due to improving the Level 03 pipeline
with arithmetic optimizations and array partitioning, thereby improving the
Latency and II of the pipelining. Level 08 would possibly achieve an even higher
speedup, but would require a larger FPGA.

The Autocorrelation achieves the best speedup at Level 08, which is consid-
erably higher than the previous best result. This is due to the fact that through
data reuse the main loop of the kernel is highly optimized to the point that
considerable clock cycles are dedicated to filling the buffers, thus partitioning
the memory has a large impact. The same applies to the 1D fir, but the increase
is not as large due to less buffers being used. There is also a large improvement
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for the 2D Convolution benchmark whose best speedup went from 1.4× to 3×
compared to C-high at Level 07. Compared to C and C-inter, the best speedups
for this benchmark are 76× and 5×, respectively. As with the previous cases,
the arithmetic and memory optimizations lead to a pipelined loop with both
lower latency and an initiation interval value. Initially, Level 08 was expected to
achieve the fastest implementation and it in fact achieves a lower latency than
Level 07. However, the way Vivado HLS schedules the code, Level 08 results
in a higher minimum clock period leading to a slower implementation when
considering executions operating at the maximum clock frequencies.

In addition to the above benchmarks, we also applied our framework to the
machine-learning SVM (Support Vector Machine) kernel presented in [4]. The
results achieved by the framework are presented in Tables 3 and 4. Compared
with previous benchmarks, Levels 02 to 06 have lower performances than C-
high. The loop generated by the backend contains 36 accesses to the matrix
that contains the support vectors. There is no redundancy between memory
accesses and thus Level 04 has little impact. Level 05 shows that the arithmetic
optimizations alone have little impact, merely an insignificant reduction of the
latency compared to Level 03. In order to lower the bottleneck caused by the
memory accesses, it is necessary to use array partitioning. By partitioning the
support vectors, the speedup compared to C-high is only 1.22×. However, when
array partitioning is combined with arithmetic optimizations as in levels 07 and
08 the speedups are 123× and 3.47× relative to C and C-high, respectively.

In [4] the authors optimize an FPGA implementation of the SVM kernel by
manually restructuring the code, and then use design space exploration (DSE) for
selecting parameter values and HLS directives. When comparing the code pro-
posed by them with the one generated using our tool, there are many similarities.
The main difference is that our tool does not partition the SVM kernel itself
to increase concurrency. Our tool attempts to obtain a similar result through
unfolding the outer loop and applying array partitioning directives. The rest of
the optimizations proposed in [4] are very similar, such as balancing the accu-
mulations in a tree, unrolling loops and applying pipeline and array partitioning
directives. Thus, our tool automatically obtains a similar code compared to the
optimized one shown in [4], depending on the users given configurations. These
results show once again the capability of our framework to achieve efficient code
restructuring plus HLS directives.

4.1 Limitations

The current version of the framework imposes restrictions on the input code to
handle. Some limitations are due to the framework being at an initial stage,
others are due to inherent characteristics of the approach. One limitation is
related to the information loss through the execution tracing. As described,
our approach simply represents the dataflow and executed operations and does
explicitly represent constructs such as for, while or conditional statements at the
frontend. The DFG at the frontend only represents the execution for the given
inputs. Conditional statements or loops branching into different dataflow paths
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depending on the inputs will conduct to different DFGs for the same input code.
Currently, the existence of control-flow that may make a certain DFG invalid
would require exit points or a decision about the execution on the accelerator.
Our future plans consider the merging of DFGs representing different execution
traces and the representation in the DFG of ternary conditional operators.

One of the major bottlenecks of the current implementation of our approach
is related to scalability. The DFGs generated by the frontend are fully unfolded
and represent each operation executed with a distinct DFG node. This results in
large DFGs, even when input datasets and/or loop iterations are not so big. One
possibility is to generate condensed DFGs by using expressions and parameters
that represent the repetition of certain patterns. We recognize the importance
to solve this problem and our future work plans include R&D of techniques to
improve the scalability of our approach.

5 Related Work

Source to source transformations have been the subject of study in the field
of HLS. For example, Cong et al. [9] presents a framework to facilitate code
restructuring for software developers. Cardoso et al. [10] present an approach to
allow users to program strategies to apply code transformations and insertion of
directives. The LegUP HLS tool [11] also accepts C as an input and implements
code restructuring through a modified LLVM compiler [12] to implement HLS
optimizations.

Although the previous work efforts on code restructuring for HLS, it is well
known that the problem is complex and difficult to make automatic as in many
cases to achieve the required code a sequence of specific optimizations is needed
[10]. Furthermore, in this sequence of optimizations there might be needed com-
piler optimizations that per se do not justify their inclusion in a typical compiler,
and the selection of the optimizations (and associated parameter values) and the
way to devise their sequence of application require exploration of a large design
space.

Also relevant are the approaches dealing specifically with data streaming
based computations. For example, Mencer et al. [13] present an approach that
uses a C-based language called ASC to implement data-streaming based com-
putations in hardware. With some similarities, the Max-Compiler [14] is a HLS
tool to implement streaming computations described as dataflow graphs in a
programming language based on Java and named as MaxJ. In [15] the authors
discuss DFG optimizations for generating better FPGA implementations in the
context of the MaxJ compiler. Most of these optimizations are also suitable for
our approach.

A pertinent approach to source to source code optimizations is the inclusion
of loop transformations based on polyhedral models [16] as presented, e.g., by
Cong et al. [9]. For example, the polyhedral models focused on nested loops
transformations can be used to optimize code, so that HLS tools can implement
improved pipelines in hardware [17,18]. Although polyhedral models can only be
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successfully applied to nested loops with specific structure, memory accesses and
predetermined upper and lower bounded loops, a future analysis and comparison
with the approach presented in this paper is required.

Our approach addresses code restructuring as a graph transformation prob-
lem and can automatically achieve more aggressive code restructuring. Although
in the current work we consider C code as input, our approach has the potential
to address different input programming languages via the inclusion of adequate
instrumentation code. We also believe that our approach can target program-
ming models such as the one used by MaxJ and in this case our approach could
possibly act as an optimizer for the MaxCompiler.

6 Conclusion

This paper presented an automatic code restructuring approach to output soft-
ware code more suitable to high-level synthesis (HLS) tools. Our approach starts
with a dataflow graph (DFG) representation of the computations, currently
obtained by executing the critical functions of the application previously added
with instrumentation code, followed by graph optimizations and folding/unfold-
ing graph operations. The proposed approach has been implemented in a frame-
work able to automatically optimize DFGs to fully generate HLS-friendly C
code added with HLS directives. The experimental results show that the C code
automatically generated by our tool outperforms the original code (including the
insertion of HLS directives) by achieving significant speedups. The restructured
C code is even comparable to, and in most cases better than, manually optimized
C code added with directives. Although the C code plus directives generated by
the tool can be always replicated by manual code transformations applied by
experts, our approach can enable software developers to target efficient hard-
ware accelerators using HLS tools as backend and without requiring support of
HLS experts.

We note however that our framework is at the moment a proof of concept for
our approach and further work needs to be done to improve it. Ongoing work
is focused on the generation of DFGs and on additional DFG optimizations.
Future work will focus on more complex memory optimizations through analyses
of the DFG, and on parameterized schemes to make possible to represent large
execution traces in a more compact DFG.
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