Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2011

Using meta-learning to recommend meta-heuristics for the traveling salesman problem

Autores
Kanda, JY; De Carvalho, ACPLF; Hruschka, ER; Soares, C;

Publicação
Proceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011

Abstract
Several optimization methods can find good solutions for different instances of the Traveling Salesman Problem (TSP). Since there is no method that generates the best solution for all instances, the selection of the most promising method for a given TSP instance is a difficult task. This paper describes a meta-learning-based approach to select optimization methods for the TSP. Multilayer perceptron (MLP) networks are trained with TSP examples. These examples are described by a set of TSP characteristics and the cost of solutions obtained by a set of optimization methods. The trained MLP network model is then used to predict a ranking of these methods for a new TSP instance. Correlation measures are used to compare the predicted ranking with the ranking previously known. The obtained results suggest that the proposed approach is promising. © 2011 IEEE.

2011

Customer-Oriented and Eco-friendly Networks for Health Fashionable Goods - The CoReNet Approach

Autores
Azevedo, A; Bastos, J; Almeida, A; Soares, C; Magaletti, N; Del Grosso, E; Stellmach, D; Winkler, M; Fornasiero, R; Zangiacomi, A; Chiodi, A;

Publicação
ADAPTATION AND VALUE CREATING COLLABORATIVE NETWORKS

Abstract
The design, production and distribution of small series of health fashionable goods for specific target groups of wide impact in terms of market for the European industry as elderly, disables, diabetics and obese people represents a challenging opportunity for European companies which are asked to supply the demand with affordable price and eco-compatible products. Added to this challenge, textile, clothing and footwear manufactures seek for innovative collaborative networking solutions that could provide an entire digital life-cycle for the products and services required by the market. Aligned with this need, the EU CoReNet project aims to design and develop a new smart collaborative consumer-driven framework with the related services and components. This paper addresses the multidisciplinary complexity of customer-oriented and eco-friendly networks for health fashionable goods in particular addressing business requirements analysis, value chain issues, co-planning production and co-design topics in collaborative business processes tailored for high variability of the consumers demand and expectations.

2011

Preface

Autores
Suzuki, E; Sebag, M; Ando, S; Balcazar, JL; Billard, A; Bratko, I; Bredeche, N; Gama, J; Grunwald, P; Iba, H; Kersting, K; Peters, J; Washio, T;

Publicação
Proceedings - IEEE International Conference on Data Mining, ICDM

Abstract

2011

Preface

Autores
Khan, L; Pechenizkiy, M; Zliobaite, I; Agrawal, C; Bifet, A; Delany, SJ; Dries, A; Fan, W; Gabrys, B; Gama, J; Gao, J; Gopalkrishnan, V; Holmes, G; Katakis, I; Kuncheva, L; Van Leeuwen, M; Masud, M; Menasalvas, E; Minku, L; Pfahringer, B; Polikar, R; Rodrigues, PP; Tsoumakas, G; Tsymbal, A;

Publicação
Proceedings - IEEE International Conference on Data Mining, ICDM

Abstract

2011

Ubiquitous Knowledge Discovery Introduction

Autores
Gama, J; May, M;

Publicação
INTELLIGENT DATA ANALYSIS

Abstract

2011

Online Evaluation of Email Streaming Classifiers Using GNUsmail

Autores
Carmona Cejudo, JM; Baena Garcia, M; del Campo Avila, J; Bifet, A; Gama, J; Morales Bueno, R;

Publicação
ADVANCES IN INTELLIGENT DATA ANALYSIS X: IDA 2011

Abstract
Real-time email classification is a challenging task because of its online nature, subject to concept-drift. Identifying spam, where only two labels exist, has received great attention in the literature. We are nevertheless interested in classification involving multiple folders, which is an additional source of complexity. Moreover, neither cross-validation nor other sampling procedures are suitable for data streams evaluation. Therefore, other metrics, like the prequential error, have been proposed. However, the prequential error poses some problems, which can be alleviated by using mechanisms such as fading factors. In this paper we present GNUsmail, an open-source extensible framework for email classification, and focus on its ability to perform online evaluation. GNUsmail's architecture supports incremental and online learning, and it can be used to compare different online mining methods, using state-of-art evaluation metrics. We show how GNUsmail can be used to compare different algorithms, including a tool for launching replicable experiments.

  • 391
  • 506