Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

O meu nome é Manuel e nasci em 1992 no Porto, Portugal. Comecei o Mestrado em Engenharia Electrotécnica e de Computadores na FEUP em 2010 e terminei em 2015 na área de Sistemas Elétricos de Energia. De agosto de 2015 até novembro de 2016, trabalhei no Departamento de I&D do Grupo Cabelte como Engenheiro de Produto de Cabos de Energia. Desde Fevereiro de 2017 trabalho como investigador no CPES do INESC TEC.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Manuel Vaz Castro
  • Cluster

    Energia
  • Cargo

    Investigador
  • Desde

    01 fevereiro 2017
007
Publicações

2020

A Hierarchical Optimization Strategy for Energy Scheduling and Volt/var Control in Autonomous Clusters of Microgrids

Autores
Castro, MV; Moreira, C; Carvalho, LM;

Publicação
IET RENEWABLE POWER GENERATION

Abstract

2019

Multi-temporal Active Power Scheduling and Voltage/var Control in Autonomous Microgrids

Autores
Castro, MV; Moreira, CL;

Publicação
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract

2016

Application of the Matlab (R) Linprog Function to Plan the Short Term Operation of Hydro Stations Considered as Price Makers

Autores
Castro, MS; Saraiva, JT; Sousa, JC;

Publicação
2016 13TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM)

Abstract
The restructuring of power systems induced new challenges to generation companies in terms of adequately planning the operation of power stations in order to maximize their profits. In this scope, hydro resources are becoming extremely valuable given the revenues that their operation can generate. In this paper we describe the application of the Matlab (R) Linprog optimization function to solve the Short Term Hydro Scheduling Problem, HSP, admitting that some stations are installed in the same cascade and that some of them have pumping capabilities. The optimization module to solve the HSP problem is then integrated in an iterative process to take into account the impact that the operation decisions regarding the hydro stations under analysis have on the market prices. The updated market prices are then used to run again the HSP problem thus enabling considering the hydro stations as price makers. The developed approach is illustrated using a system based on the Portuguese Douro River cascade that includes 9 hydro stations (4 of them are pumping stations) and a total installed capacity of 1485 MW.