Cookies
Usamos cookies para melhorar nosso site e a sua experiência. Ao continuar a navegar no site, você aceita a nossa política de cookies. Ver mais
Aceitar Rejeitar
  • Menu
Sobre
Download foto HD

Sobre

Luís Miguel Miranda nasceu em Barcelos (Portugal) a 9 de Outubro de 1987. Obteve o grau de Mestre em Engenharia Eletrotécnica e de Computadores pela Faculdade de Engenharia da Universidade do Porto em Julho de 2011.

Em Dezembro de 2010 integrou o INESC TEC (na altura INESC Porto) como membro da equipa de investigação do projeto REIVE – Redes Elétricas Inteligentes com Veículos Elétricos. A sua principal atividade foi focada no desenvolvimento de protótipos de conversores eletrónicos para integração com as estratégias de gestão de redes inteligentes demonstradas neste projeto.

Em 2013 integrou a equipa de investigação do projeto COMUTE-DC, estando responsável pelo desenvolvimento da infraestrutura laboratorial para implementação de uma rede DC multi-terminal em escala reduzida, incluindo simuladores de linhas de transmissão de corrente continua e conversores eletrónicos.

Entre 2014 e 2016 esteve envolvido no projeto Sustainable, especificamente no desenvolvimento de conversores eletrónicos de potência com funcionalidades avançadas para integração de energia fotovoltaica e armazenamento de energia. Estes equipamentos estão atualmente instalados num piloto/demonstrador numa aldeia da cidade de Évora. Desde 2016 está no projeto Sensible, envolvido no desenvolvimento de um novo sistema de armazenamento de energia para a baixa tensão com capacidade de sobrevivência a cavas de tensão, que será instalado num rede elétrica real.

Tem também experiência no terreno em cooperação com empresas, tal como a Omniflow. Com esta parceria, foi desenvolvido um sistema de iluminação pública auto-sustentável, combinando células fotovoltaicas e uma turbina eólica inovadora.

Este trabalho resulta numa experiencia extensa em projeto elétrico e eletrónico, bem como conhecimentos sólidos de soluções comerciais para redes inteligentes e a sua integração em ambiente laboratorial. Tem também competências no manuseio de instrumentos de medição e análise laboratorial.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Luís Miguel Miranda
  • Cluster

    Energia
  • Cargo

    Investigador Auxiliar
  • Desde

    15 dezembro 2010
007
Publicações

2018

Modulation Strategy for a Single-stage Bidirectional and Isolated AC-DC Matrix Converter for Energy Storage Systems

Autores
Varajao, D; Araujo, RE; Miranda, LM; Pecas Lopes, JAP;

Publicação
IEEE Transactions on Industrial Electronics

Abstract
This paper presents a new modulation and control strategies for high-frequency link matrix converter. The proposed method aims to achieve controllable power factor in the grid interface as well voltage and current regulation for a battery energy storage device. The matrix converter is a key element of the system, since performs a direct AC to AC conversion between the grid and the power transformer, dispensing the traditional DC-link capacitors. Therefore, the circuit volume and weight are reduced and a longer service life is expected when compared with the existing technical solutions. A prototype was built to validate the mathematical analysis and the simulation results. Experimental tests developed in this research show the capability to control the grid currents in the synchronous reference frame in order to provide grid services. Simultaneously, the battery current is well regulated with small ripple which makes this converter ideal for battery charging of electric vehicles and energy storage applications. IEEE

2018

The role of low-voltage-ride-through capability of distributed energy resources for the mitigation of voltage sags in low voltage distribution grids

Autores
Rodrigues, J; Lopes, A; Miranda, L; Gouveia, C; Moreira, C; Pecas Lopes, JP;

Publicação
20th Power Systems Computation Conference, PSCC 2018

Abstract
The large scale integration of Distributed Energy Resources (DER) at the Low Voltage (LV) distribution network offers new opportunities for the improvement of power quality and network reliability. Currently, the occurrence of large disturbances at the transmission network causing severe voltage sags at the distribution level could lead to the disconnection of a large share of DER units connected to the LV network, causing a more severe disturbance. In this paper, Low-Voltage-Ride-Through (LVRT) requirements and current support strategies are proposed to mitigate the impact of severe voltage sag at the distribution level for DER units connected to LV network. The impact of adopting the proposed LVRT strategies will be analyzed through simulation and experimentally. A developed in house ESS prototype incorporating the developed LVRT strategies is also presented, and its capacity to comply with the proposed LVRT requirements is demonstrated using an experimental Power-Hardware-in-the-Loop (PHIL) setup. © 2018 Power Systems Computation Conference.

2018

EMI Filter Design for a Single-stage Bidirectional and Isolated AC–DC Matrix Converter

Autores
Varajao, D; Araujo, RE; Miranda, LM; Pecas Lopes, JAP;

Publicação
Electronics

Abstract
This paper describes the design of an electromagnetic interference (EMI) filter for the high-frequency link matrix converter (HFLMC). The proposed method aims to systematize the design process for pre-compliance with CISPR 11 Class B standard in the frequency range 150 kHz to 30 MHz. This approach can be extended to other current source converters which allows time-savings during the project of the filter. Conducted emissions are estimated through extended simulation and take into account the effect of the measurement apparatus. Differential-mode (DM) and common-mode (CM) filtering stages are projected separately and then integrated in a synergistic way in a single PCB to reduce volume and weight. A prototype of the filter was constructed and tested in the laboratory. Experimental results with the characterization of the insertion losses following the CISPR 17 standard are provided. The attenuation capability of the filter was demonstrated in the final part of the paper.

2017

Control of an isolated single-phase bidirectional AC-DC matrix converter for V2G applications

Autores
Varajao, D; Araujo, RE; Miranda, LM; Pecas Lopes, JP; Weise, ND;

Publicação
Electric Power Systems Research

Abstract
This paper describes a new current control method that enhances the dynamic performance of a single-phase bidirectional AC-DC battery charger to provide a high-frequency link between the grid and electric vehicle. The single-stage structure and the bidirectional power flow make the matrix converter an attractive solution for electric vehicle (EV) battery charging applications in the context of smart grids. The operating principles and modulation method are analyzed and discussed in detail. Furthermore, a current controller improved with a Smith predictor is proposed to decrease the phase delay in the measurement of the average current in the battery pack. The SP reduces the rise time to around a third and the settling time to half when compared with a PI controller. Simulations and experimental results from a laboratory prototype are shown to verify the feasibility of the proposed control scheme. © 2017 Elsevier B.V.

2016

Experimental validation of smart distribution grids: Development of a microgrid and electric mobility laboratory

Autores
Gouveia, C; Rua, D; Ribeiro, F; Miranda, L; Rodrigues, JM; Moreira, CL; Pecas Lopes, JAP;

Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
The development of the Smart Grid concept is the pathway for assuring high reliability, control and management requirements in future electric power distribution systems. The Smart Grid can be defined as an electricity network supported by an intelligent infrastructure, both hardware and software, capable of accommodating high shares of Distributed Energy Resources. Within this line, a Smart Grid laboratorial infrastructure was developed, being dedicated to advanced research and demonstration activities. The adopted laboratorial architecture was developed according to the Microgrid concept, where Electric Vehicles are regarded as active and flexible players. Following the laboratory implementation, this paper provides a detailed description of its infrastructure and experimental capabilities, presenting and discussing different experimental set-ups and associated results.