Cookies
Usamos cookies para melhorar nosso site e a sua experiência. Ao continuar a navegar no site, você aceita a nossa política de cookies. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

001
Publicações

2020

Path Planning Aware of Robot’s Center of Mass for Steep Slope Vineyards

Autores
Santos, L; Santos, F; Mendes, J; Costa, P; Lima, J; Reis, R; Shinde, P;

Publicação
Robotica

Abstract
SummarySteep slope vineyards are a complex scenario for the development of ground robots. Planning a safe robot trajectory is one of the biggest challenges in this scenario, characterized by irregular surfaces and strong slopes (more than 35°). Moving the robot through a pile of stones, spots with high slope or/and with wrong robot yaw may result in an abrupt fall of the robot, damaging the equipment and centenary vines, and sometimes imposing injuries to humans. This paper presents a novel approach for path planning aware of center of mass of the robot for application in sloppy terrains. Agricultural robotic path planning (AgRobPP) is a framework that considers the A* algorithm by expanding inner functions to deal with three main inputs: multi-layer occupation grid map, altitude map and robot’s center of mass. This multi-layer grid map is updated by obstacles taking into account the terrain slope and maximum robot posture. AgRobPP is also extended with algorithms for local trajectory replanning during the execution of a trajectory that is blocked by the presence of an obstacle, always assuring the safety of the re-planned path. AgRobPP has a novel PointCloud translator algorithm called PointCloud to grid map and digital elevation model (PC2GD), which extracts the occupation grid map and digital elevation model from a PointCloud. This can be used in AgRobPP core algorithms and farm management intelligent systems as well. AgRobPP algorithms demonstrate a great performance with the real data acquired from AgRob V16, a robotic platform developed for autonomous navigation in steep slope vineyards.

2019

Localization Based on Natural Features Detector for Steep Slope Vineyards

Autores
Mendes, JM; dos Santos, FN; Ferraz, NA; do Couto, PM; dos Santos, RM;

Publicação
Journal of Intelligent and Robotic Systems: Theory and Applications

Abstract
Placing ground robots to work in steep slope vineyards is a complex challenge. The Global Positioning System (GPS) signal is not always available and accurate. A reliable localization approach to detect natural features for this environment is required. This paper presents an improved version of a visual detector for Vineyards Trunks and Masts (ViTruDe) and, a robot able to cope pruning actions in steep slope vineyards (AgRob V16). In addition, it presents an augmented data-set for other localization and mapping algorithm benchmarks. ViTruDe accuracy is higher than 95% under our experiments. Under a simulated runtime test, the accuracy lies between 27% - 96% depending on ViTrude parametrization. This approach can feed a localization system to solve a GPS signal absence. The ViTruDe detector also considers economic constraints and allows to develop cost-effective robots. The augmented training and datasets are publicly available for future research work. © 2018 Springer Science+Business Media B.V., part of Springer Nature

2019

Parallelization of a Vine Trunk Detection Algorithm for a Real Time Robot Localization System

Autores
Azevedo, F; Shinde, P; Santos, L; Mendes, J; Santos, FN; Mendonca, H;

Publicação
19th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2019

Abstract
Developing ground robots for crop monitoring and harvesting in steep slope vineyards is a complex challenge due to two main reasons: harsh condition of the terrain and unstable localization accuracy obtained with Global Navigation Satellite System (GNSS). In this context, a reliable localization system requires an accurate detector for high density of natural/artificial features. In previous works, we presented a novel visual detector for Vineyards Trunks and Masts (ViTruDe) with high levels of detection accuracy. However, its implementation on the most common processing units - central processing units (CPU), using a standard programming language (C/C++), is unable to reach the processing efficiency requirements for real time operation. In this work, we explored parallelization capabilities of processing units, such as graphics processing units (GPU), in order to accelerate the processing time of ViTruDe. This work gives a general perspective on how to parallelize a generic problem in a GPU based solution, while exploring its efficiency when applied to the problem at hands. The ViTruDe detector for GPU was developed considering the constraints of a cost-effective robot to carry-out crop monitoring tasks in steep slope vineyard environments. We compared the proposed ViTruDe implementation on GPU using Compute Unified Compute Unified Device Architecture(CUDA) and CPU, and the achieved solution is over eighty times faster than its CPU counterpart. The training and test data are made public for future research work. This approach is a contribution for an accurate and reliable localization system that is GNSS-free. © 2019 IEEE.

2019

A Low-Cost System to Estimate Leaf Area Index Combining Stereo Images and Normalized Difference Vegetation Index

Autores
Mendes, JM; Filipe, VM; dos Santos, FN; Morais dos Santos, R;

Publicação
Progress in Artificial Intelligence - Lecture Notes in Computer Science

Abstract

2019

Low-Cost IoT LoRa®Solutions for Precision Agriculture Monitoring Practices

Autores
Silva, N; Mendes, J; Silva, R; dos Santos, FN; Mestre, P; Serôdio, C; Morais, R;

Publicação
Progress in Artificial Intelligence - Lecture Notes in Computer Science

Abstract