Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2024

Allocation of national renewable expansion and sectoral demand reduction targets to municipal level

Authors
Schneider, S; Parada, E; Sengl, D; Baptista, J; Oliveira, PM;

Publication
FRONTIERS IN SUSTAINABLE CITIES

Abstract
Despite the ubiquitous term climate neutral cities, there is a distinct lack of quantifiable and meaningful municipal decarbonization goals in terms of the targeted energy balance and composition that collectively connect to national scenarios. In this paper we present a simple but useful allocation approach to derive municipal targets for energy demand reduction and renewable expansion based on national energy transition strategies in combination with local potential estimators. The allocation uses local and regional potential estimates for demand reduction and the expansion of renewables and differentiates resulting municipal needs of action accordingly. The resulting targets are visualized and opened as a decision support system (DSS) on a web-platform to facilitate the discussion on effort sharing and potential realization in the decarbonization of society. With the proposed framework, different national scenarios, and their implications for municipal needs for action can be compared and their implications made explicit.

2024

Comparative Analysis of Windows for Speech Emotion Recognition Using CNN

Authors
Teixeira, FL; Soares, SP; Abreu, JP; Oliveira, PM; Teixeira, JP;

Publication
Optimization, Learning Algorithms and Applications

Abstract

2024

A Performance Comparison between Different Industrial Real-Time Indoor Localization Systems for Mobile Platforms

Authors
Rebelo, PM; Lima, J; Soares, SP; Moura Oliveira, P; Sobreira, H; Costa, P;

Publication
Sensors

Abstract
The flexibility and versatility associated with autonomous mobile robots (AMR) have facilitated their integration into different types of industries and tasks. However, as the main objective of their implementation on the factory floor is to optimize processes and, consequently, the time associated with them, it is necessary to take into account the environment and congestion to which they are subjected. Localization, on the shop floor and in real time, is an important requirement to optimize the AMRs’ trajectory management, thus avoiding livelocks and deadlocks during their movements in partnership with manual forklift operators and logistic trains. Threeof the most commonly used localization techniques in indoor environments (time of flight, angle of arrival, and time difference of arrival), as well as two of the most commonly used indoor localization methods in the industry (ultra-wideband, and ultrasound), are presented and compared in this paper. Furthermore, it identifies and compares three industrial indoor localization solutions: Qorvo, Eliko Kio, and Marvelmind, implemented in an industrial mobile platform, which is the main contribution of this paper. These solutions can be applied to both AMRs and other mobile platforms, such as forklifts and logistic trains. In terms of results, the Marvelmind system, which uses an ultrasound method, was the best solution.

2024

Automated Detection of Refilling Stations in Industry Using Unsupervised Learning

Authors
Ribeiro, J; Pinheiro, R; Soares, S; Valente, A; Amorim, V; Filipe, V;

Publication
Lecture Notes in Mechanical Engineering

Abstract
The manual monitoring of refilling stations in industrial environments can lead to inefficiencies and errors, which can impact the overall performance of the production line. In this paper, we present an unsupervised detection pipeline for identifying refilling stations in industrial environments. The proposed pipeline uses a combination of image processing, pattern recognition, and deep learning techniques to detect refilling stations in visual data. We evaluate our method on a set of industrial images, and the findings demonstrate that the pipeline is reliable at detecting refilling stations. Furthermore, the proposed pipeline can automate the monitoring of refilling stations, eliminating the need for manual monitoring and thus improving industrial operations’ efficiency and responsiveness. This method is a versatile solution that can be applied to different industrial contexts without the need for labeled data or prior knowledge about the location of refilling stations. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2024

Automatic Fall Detection with Thermal Camera

Authors
Kalbermatter, RB; Franco, T; Pereira, AI; Valente, A; Soares, SP; Lima, J;

Publication
Communications in Computer and Information Science - Optimization, Learning Algorithms and Applications

Abstract

2024

Prototype for the Application of Production of Heavy Steel Structures

Authors
Bulganbayev, MA; Suliyev, R; Ferreira, NMF;

Publication
ELECTRONICS

Abstract
This study provides a comprehensive overview of the automated assembly process of large-scale metal structures using industrial robots. Our research reveals that the utilization of industrial robots significantly enhances precision, speed, and cost-effectiveness in the assembly process. The main findings suggest that integrating industrial robots in metal structure assembly holds substantial promise for optimizing manufacturing processes and elevating the quality of the final products. Additionally, the research demonstrates that robotic automation in assembly operations can lead to significant improvements in resource utilization and operational consistency. This automation also offers a viable solution to the challenges of manual labor shortages and ensures a higher standard of safety and accuracy in the manufacturing environment.

  • 3
  • 349