Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Pedro Gabriel Ferreira

2020

Predicting Gastric Cancer Molecular Subtypes from Gene Expression Data

Authors
Moreno, M; Sousa, A; Melé, M; Oliveira, R; G Ferreira, P;

Publication
Proceedings

Abstract

2020

A Quantitative Proteome Map of the Human Body

Authors
Jiang, L; Wang, M; Lin, S; Jian, R; Li, X; Chan, J; Dong, G; Fang, H; Robinson, AE; Snyder, MP; Aguet, F; Anand, S; Ardlie, KG; Gabriel, S; Getz, G; Graubert, A; Hadley, K; Handsaker, RE; Huang, KH; Kashin, S; MacArthur, DG; Meier, SR; Nedzel, JL; Nguyen, DY; Segrè, AV; Todres, E; Balliu, B; Barbeira, AN; Battle, A; Bonazzola, R; Brown, A; Brown, CD; Castel, SE; Conrad, D; Cotter, DJ; Cox, N; Das, S; de Goede, OM; Dermitzakis, ET; Engelhardt, BE; Eskin, E; Eulalio, TY; Ferraro, NM; Flynn, E; Fresard, L; Gamazon, ER; Garrido-Martín, D; Gay, NR; Guigó, R; Hamel, AR; He, Y; Hoffman, PJ; Hormozdiari, F; Hou, L; Im, HK; Jo, B; Kasela, S; Kellis, M; Kim-Hellmuth, S; Kwong, A; Lappalainen, T; Li, X; Liang, Y; Mangul, S; Mohammadi, P; Montgomery, SB; Muñoz-Aguirre, M; Nachun, DC; Nobel, AB; Oliva, M; Park, Y; Park, Y; Parsana, P; Reverter, F; Rouhana, JM; Sabatti, C; Saha, A; Skol, AD; Stephens, M; Stranger, BE; Strober, BJ; Teran, NA; Viñuela, A; Wang, G; Wen, X; Wright, F; Wucher, V; Zou, Y; Ferreira, PG; Li, G; Melé, M; Yeger-Lotem, E; Barcus, ME; Bradbury, D; Krubit, T; McLean, JA; Qi, L; Robinson, K; Roche, NV; Smith, AM; Sobin, L; Tabor, DE; Undale, A; Bridge, J; Brigham, LE; Foster, BA; Gillard, BM; Hasz, R; Hunter, M; Johns, C; Johnson, M; Karasik, E; Kopen, G; Leinweber, WF; McDonald, A; Moser, MT; Myer, K; Ramsey, KD; Roe, B; Shad, S; Thomas, JA; Walters, G; Washington, M; Wheeler, J; Jewell, SD; Rohrer, DC; Valley, DR; Davis, DA; Mash, DC; Branton, PA; Barker, LK; Gardiner, HM; Mosavel, M; Siminoff, LA; Flicek, P; Haeussler, M; Juettemann, T; Kent, WJ; Lee, CM; Powell, CC; Rosenbloom, KR; Ruffier, M; Sheppard, D; Taylor, K; Trevanion, SJ; Zerbino, DR; Abell, NS; Akey, J; Chen, L; Demanelis, K; Doherty, JA; Feinberg, AP; Hansen, KD; Hickey, PF; Jasmine, F; Kaul, R; Kibriya, MG; Li, JB; Li, Q; Linder, SE; Pierce, BL; Rizzardi, LF; Smith, KS; Stamatoyannopoulos, J; Tang, H; Carithers, LJ; Guan, P; Koester, SE; Little, AR; Moore, HM; Nierras, CR; Rao, AK; Vaught, JB; Volpi, S;

Publication
Cell

Abstract
Determining protein levels in each tissue and how they compare with RNA levels is important for understanding human biology and disease as well as regulatory processes that control protein levels. We quantified the relative protein levels from over 12,000 genes across 32 normal human tissues. Tissue-specific or tissue-enriched proteins were identified and compared to transcriptome data. Many ubiquitous transcripts are found to encode tissue-specific proteins. Discordance of RNA and protein enrichment revealed potential sites of synthesis and action of secreted proteins. The tissue-specific distribution of proteins also provides an in-depth view of complex biological events that require the interplay of multiple tissues. Most importantly, our study demonstrated that protein tissue-enrichment information can explain phenotypes of genetic diseases, which cannot be obtained by transcript information alone. Overall, our results demonstrate how understanding protein levels can provide insights into regulation, secretome, metabolism, and human diseases.

2021

Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease

Authors
de Goede, OM; Nachun, DC; Ferraro, NM; Gloudemans, MJ; Rao, AS; Smail, C; Eulalio, TY; Aguet, F; Ng, B; Xu, J; Barbeira, AN; Castel, SE; Kim-Hellmuth, S; Park, Y; Scott, AJ; Strober, BJ; Brown, CD; Wen, X; Hall, IM; Battle, A; Lappalainen, T; Im, HK; Ardlie, KG; Mostafavi, S; Quertermous, T; Kirkegaard, K; Montgomery, SB; Anand, S; Gabriel, S; Getz, GA; Graubert, A; Hadley, K; Handsaker, RE; Huang, KH; Li, X; MacArthur, DG; Meier, SR; Nedzel, JL; Nguyen, DT; Segrè, AV; Todres, E; Balliu, B; Bonazzola, R; Brown, A; Conrad, DF; Cotter, DJ; Cox, N; Das, S; Dermitzakis, ET; Einson, J; Engelhardt, BE; Eskin, E; Flynn, ED; Fresard, L; Gamazon, ER; Garrido-Martín, D; Gay, NR; Guigó, R; Hamel, AR; He, Y; Hoffman, PJ; Hormozdiari, F; Hou, L; Jo, B; Kasela, S; Kashin, S; Kellis, M; Kwong, A; Li, X; Liang, Y; Mangul, S; Mohammadi, P; Muñoz-Aguirre, M; Nobel, AB; Oliva, M; Park, Y; Parsana, P; Reverter, F; Rouhana, JM; Sabatti, C; Saha, A; Stephens, M; Stranger, BE; Teran, NA; Viñuela, A; Wang, G; Wright, F; Wucher, V; Zou, Y; Ferreira, PG; Li, G; Melé, M; Yeger-Lotem, E; Bradbury, D; Krubit, T; McLean, JA; Qi, L; Robinson, K; Roche, NV; Smith, AM; Tabor, DE; Undale, A; Bridge, J; Brigham, LE; Foster, BA; Gillard, BM; Hasz, R; Hunter, M; Johns, C; Johnson, M; Karasik, E; Kopen, G; Leinweber, WF; McDonald, A; Moser, MT; Myer, K; Ramsey, KD; Roe, B; Shad, S; Thomas, JA; Walters, G; Washington, M; Wheeler, J; Jewell, SD; Rohrer, DC; Valley, DR; Davis, DA; Mash, DC; Barcus, ME; Branton, PA; Sobin, L; Barker, LK; Gardiner, HM; Mosavel, M; Siminoff, LA; Flicek, P; Haeussler, M; Juettemann, T; Kent, WJ; Lee, CM; Powell, CC; Rosenbloom, KR; Ruffier, M; Sheppard, D; Taylor, K; Trevanion, SJ; Zerbino, DR; Abell, NS; Akey, J; Chen, L; Demanelis, K; Doherty, JA; Feinberg, AP; Hansen, KD; Hickey, PF; Jasmine, F; Jiang, L; Kaul, R; Kibriya, MG; Li, JB; Li, Q; Lin, S; Linder, SE; Pierce, BL; Rizzardi, LF; Skol, AD; Smith, KS; Snyder, M; Stamatoyannopoulos, J; Tang, H; Wang, M; Carithers, LJ; Guan, P; Koester, SE; Little, AR; Moore, HM; Nierras, CR; Rao, AK; Vaught, JB; Volpi, S;

Publication
Cell

Abstract
Long non-coding RNA (lncRNA) genes have well-established and important impacts on molecular and cellular functions. However, among the thousands of lncRNA genes, it is still a major challenge to identify the subset with disease or trait relevance. To systematically characterize these lncRNA genes, we used Genotype Tissue Expression (GTEx) project v8 genetic and multi-tissue transcriptomic data to profile the expression, genetic regulation, cellular contexts, and trait associations of 14,100 lncRNA genes across 49 tissues for 101 distinct complex genetic traits. Using these approaches, we identified 1,432 lncRNA gene-trait associations, 800 of which were not explained by stronger effects of neighboring protein-coding genes. This included associations between lncRNA quantitative trait loci and inflammatory bowel disease, type 1 and type 2 diabetes, and coronary artery disease, as well as rare variant associations to body mass index.

2020

The impact of sex on gene expression across human tissues

Authors
Aguet F.; Barbeira A.N.; Bonazzola R.; Brown A.; Castel S.E.; Jo B.; Kasela S.; Kim-Hellmuth S.; Liang Y.; Oliva M.; Flynn E.D.; Parsana P.; Fresard L.; Gamazon E.R.; Hamel A.R.; He Y.; Hormozdiari F.; Mohammadi P.; Muñoz-Aguirre M.; Park Y.S.; Saha A.; Segrè A.V.; Strober B.J.; Wen X.; Wucher V.; Ardlie K.G.; Battle A.; Brown C.D.; Cox N.; Das S.; Dermitzakis E.T.; Engelhardt B.E.; Garrido-Martín D.; Gay N.R.; Getz G.A.; Guigó R.; Handsaker R.E.; Hoffman P.J.; Im H.K.; Kashin S.; Kwong A.; Lappalainen T.; Li X.; MacArthur D.G.; Montgomery S.B.; Rouhana J.M.; Stephens M.; Stranger B.E.; Todres E.; Viñuela A.; Wang G.; Zou Y.; Anand S.; Gabriel S.; Graubert A.; Hadley K.; Huang K.H.; Meier S.R.; Nedzel J.L.; Nguyen D.T.; Balliu B.; Conrad D.F.; Cotter D.J.; deGoede O.M.; Einson J.; Eskin E.; Eulalio T.Y.; Ferraro N.M.; Gloudemans M.J.; Hou L.; Kellis M.; Li X.; Mangul S.; Nachun D.C.; Nobel A.B.; Park Y.; Rao A.S.; Reverter F.; Sabatti C.; Skol A.D.; Teran N.A.; Wright F.; Ferreira P.G.; Li G.; Melé M.; Yeger-Lotem E.; Barcus M.E.; Bradbury D.; Krubit T.; McLean J.A.; Qi L.; Robinson K.; Roche N.V.; Smith A.M.; Sobin L.; Tabor D.E.; Undale A.; Bridge J.; Brigham L.E.; Foster B.A.;

Publication
Science

Abstract
INTRODUCTION: Many complex human phenotypes, including diseases, exhibit sex-differentiated characteristics. These sex differences have been variously attributed to hormones, sex chromosomes, genotype × sex effects, differences in behavior, and differences in environmental exposures; however, their mechanisms and underlying biology remain largely unknown. The Genotype-Tissue Expression (GTEx) project provides an opportunity to investigate the prevalence and genetic mechanisms of sex differences in the human transcriptome by surveying many tissues that have not previously been characterized in this manner. RATIONALE: To characterize sex differences in the human transcriptome and its regulation, and to discover how sex and genetics interact to influence complex traits and disease, we generated a catalog of sex differences in gene expression and its genetic regulation across 44 human tissue sources surveyed by the GTEx project (v8 data release), analyzing 16,245 RNA-sequencing samples and genotypes of 838 adult individuals. We report sex differences in gene expression levels, tissue cell type composition, and cis expression quantitative trait loci (cis-eQTLs). To assess their impact, we integrated these results with gene function, transcription factor binding annotation, and genome-wide association study (GWAS) summary statistics of 87 GWASs. RESULTS: Sex effects on gene expression are ubiquitous (13,294 sex-biased genes across all tissues). However, these effects are small and largely tissue-specific. Genes with sex-differentiated expression are not primarily driven by tissue-specific gene expression and are involved in a diverse set of biological functions, such as drug and hormone response, embryonic development and tissue morphogenesis, fertilization, sexual reproduction and spermatogenesis, fat metabolism, cancer, and immune response. Whereas X-linked genes with higher expression in females suggest candidates for escape from X-chromosome inactivation, sex-biased expression of autosomal genes suggests hormone-related transcription factor regulation and a role for additional transcription factors, as well as sex-differentiated distribution of epigenetic marks, particularly histone H3 Lys27 trimethylation (H3K27me3). Sex differences in the genetic regulation of gene expression are much less common (369 sex-biased eQTLs across all tissues) and are highly tissue-specific. We identified 58 gene-trait associations driven by genetic regulation of gene expression in a single sex. These include loci where sex-differentiated cell type abundances mediate genotype-phenotype associations, as well as loci where sex may play a more direct role in the underlying molecular mechanism of the association. For example, we identified a female-specific eQTL in liver for the hexokinase HKDC1 that influences glucose metabolism in pregnant females, which is subsequently reflected in the birth weight of the offspring. CONCLUSION: By integrating sex-aware analyses of GTEx data with gene function and transcription factor binding annotations, we describe tissue-specific and tissue-shared drivers and mechanisms contributing to sex differences in the human transcriptome and eQTLs. We discovered multiple sex-differentiated genetic effects on gene expression that colocalize with complex trait genetic associations, thereby facilitating the mechanistic interpretation of GWAS signals. Because the causative tissue is unknown for many phenotypes, analysis of the diverse GTEx tissue collection can serve as a powerful resource for investigations into the basis of sex-biased traits. This work provides an extensive characterization of sex differences in the human transcriptome and its genetic regulation.

2020

Cell type–specific genetic regulation of gene expression across human tissues

Authors
Kim-Hellmuth S.; Aguet F.; Oliva M.; Muñoz-Aguirre M.; Kasela S.; Wucher V.; Castel S.E.; Hamel A.R.; Viñuela A.; Roberts A.L.; Mangul S.; Wen X.; Wang G.; Barbeira A.N.; Garrido-Martín D.; Nadel B.B.; Zou Y.; Bonazzola R.; Quan J.; Brown A.; Martinez-Perez A.; Soria J.M.; Getz G.; Dermitzakis E.T.; Small K.S.; Stephens M.; Xi H.S.; Im H.K.; Guigó R.; Segrè A.V.; Stranger B.E.; Ardlie K.G.; Lappalainen T.; Anand S.; Gabriel S.; Getz G.A.; Graubert A.; Hadley K.; Handsaker R.E.; Huang K.H.; Kashin S.; Li X.; MacArthur D.G.; Meier S.R.; Nedzel J.L.; Nguyen D.T.; Todres E.; Balliu B.; Battle A.; Brown C.D.; Conrad D.F.; Cotter D.J.; Cox N.; Das S.; de Goede O.M.; Einson J.; Engelhardt B.E.; Eskin E.; Eulalio T.Y.; Ferraro N.M.; Flynn E.D.; Fresard L.; Gamazon E.R.; Gay N.R.; Gloudemans M.J.; Hame A.R.; He Y.; Hoffman P.J.; Hormozdiari F.; Hou L.; Jo B.; Kellis M.; Kwong A.; Li X.; Liang Y.; Mohammadi P.; Montgomery S.B.; Nachun D.C.; Nobel A.B.; Park Y.S.; Park Y.; Parsana P.; Rao A.S.; Reverter F.; Rouhana J.M.; Sabatti C.; Saha A.; Skol A.D.; Strober B.J.; Teran N.A.; Wright F.; Ferreira P.G.; Li G.; Melé M.; Yeger-Lotem E.; Barcus M.E.; Bradbury D.; Krubit T.; McLean J.A.; Qi L.;

Publication
Science

Abstract
INTRODUCTION: Efforts to map quantitative trait loci (QTLs) across human tissues by the GTEx Consortium and others have identified expression and splicing QTLs (eQTLs and sQTLs, respectively) for a majority of genes. However, these studies were largely performed with gene expression measurements from bulk tissue samples, thus obscuring the cellular specificity of genetic regulatory effects and in turn limiting their functional interpretation. Identifying the cell type (or types) in which a QTL is active will be key to uncovering the molecular mechanisms that underlie complex trait variation. Recent studies demonstrated the feasibility of identifying cell type–specific QTLs from bulk tissue RNA-sequencing data by using computational estimates of cell type proportions. To date, such approaches have only been applied to a limited number of cell types and tissues. By applying this methodology to GTEx tissues for a diverse set of cell types, we aim to characterize the cellular specificity of genetic effects across human tissues and to describe the contribution of these effects to complex traits. RATIONALE: A growing number of in silico cell type deconvolution methods and associated reference panels with cell type–specific marker genes enable the robust estimation of the enrichment of specific cell types from bulk tissue gene expression data. We benchmarked and used enrichment estimates for seven cell types (adipocytes, epithelial cells, hepatocytes, keratinocytes, myocytes, neurons, and neutrophils) across 35 tissues from the GTEx project to map QTLs that are specific to at least one cell type. We mapped such cell type–interaction QTLs for expression and splicing (ieQTLs and isQTLs, respectively) by testing for interactions between genotype and cell type enrichment. RESULTS: Using 43 pairs of tissues and cell types, we found 3347 protein-coding and long intergenic noncoding RNA (lincRNA) genes with an ieQTL and 987 genes with an isQTL (at 5% false discovery rate in each pair). To validate these findings, we tested the QTLs for replication in available external datasets and applied an independent validation using allele-specific expression from eQTL heterozygotes. We analyzed the cell type–interaction QTLs for patterns of tissue sharing and found that ieQTLs are enriched for genes with tissue-specific eQTLs and are generally not shared across unrelated tissues, suggesting that tissue-specific eQTLs originate in tissue-specific cell types. Last, we tested the ieQTLs and isQTLs for colocalization with genetic associations for 87 complex traits. We show that cell type–interaction QTLs are enriched for complex trait associations and identify colocalizations for hundreds of loci that were undetected in bulk tissue, corresponding to an increase of >50% over colocalizations with standard QTLs. Our results also reveal the cellular specificity and potential origin for a similar number of colocalized standard QTLs. CONCLUSION: The ieQTLs and isQTLs identified for seven cell types across GTEx tissues suggest that the large majority of cell type–specific QTLs remains to be discovered. Our colocalization results indicate that comprehensive mapping of cell type–specific QTLs will be highly valuable for gaining a mechanistic understanding of complex trait associations. We anticipate that the approaches presented here will complement studies mapping QTLs in single cells.

2020

Predicting Gastric Cancer Molecular Subtypes from Gene Expression Data

Authors
Moreno, M; Sousa, A; Melé, M; Oliveira, R; G Ferreira, P;

Publication
Proceedings

Abstract
Stomach cancer is a complex disease and one of the leading causes of cancer mortality in the world. With the view to improve patient diagnosis and prognosis, it has been stratified into four molecular subtypes. In this work, we compare the results of multiple machine learning algorithms for the prediction of stomach cancer molecular subtypes from gene expression data. Moreover, we show the importance of decorrelating clinical and technical covariates.

  • 2
  • 13