Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Diego Wanderley

2018

End-to-End Ovarian Structures Segmentation

Authors
Wanderley, DS; Carvalho, CB; Domingues, A; Peixoto, C; Pignatelli, D; Beires, J; Silva, J; Campilho, A;

Publication
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings

Abstract
The segmentation and characterization of the ovarian structures are important tasks in gynecological and reproductive medicine. Ultrasound imaging is typically used for the medical diagnosis within this field but the understanding of the images can be difficult due to their characteristics. Furthermore, the complexity of ultrasound data may lead to a heavy image processing, which makes the application of classical methods of computer vision difficult. This work presents the first supervised fully convolutional neural network (fCNN) for the automatic segmentation of ovarian structures in B-mode ultrasound images. Due to the small dataset available, only 57 images were used for training. In order to overcome this limitation, several regularization techniques were used and are discussed in this paper. The experiments show the ability of the fCNN to learn features to distinguish ovarian structures, achieving a Dice similarity coefficient (DSC) of 0.855 for the segmentation of the stroma and a DSC of 0.955 for the follicles. When compared with a semi-automatic commercial application for follicle segmentation, the proposed fCNN achieved an average improvement of 19%. © Springer Nature Switzerland AG 2019.

2014

Color image super-resolution based on Wiener filters

Authors
Wanderley, DS; Petraglia, MR; Gomes, JGRC;

Publication
2014 International Telecommunications Symposium (ITS)

Abstract

2019

Analysis of the performance of specialists and an automatic algorithm in retinal image quality assessment

Authors
Wanderley, DS; Araujo, T; Carvalho, CB; Maia, C; Penas, S; Carneiro, A; Mendonca, AM; Campilho, A;

Publication
2019 6TH IEEE PORTUGUESE MEETING IN BIOENGINEERING (ENBENG)

Abstract
This study describes a novel dataset with retinal image quality annotation, defined by three different retinal experts, and presents an inter-observer analysis for quality assessment that can be used as gold-standard for future studies. A state-of-the-art algorithm for retinal image quality assessment is also analysed and compared against the specialists performance. Results show that, for 71% of the images present in the dataset, the three experts agree on the given image quality label. The results obtained for accuracy, specificity and sensitivity when comparing one expert against another were in the ranges [83.0 - 85.2]%, [72.7 - 92.9]% and [80.0 - 94.7]%, respectively. The evaluated automatic quality assessment method, despite not being trained on the novel dataset, presents a performance which is within inter-observer variability.

2021

Ovarian Structures Detection using Convolutional Neural Networks

Authors
Wanderley, DS; Ferreira, CA; Campilho, A; Silva, JA;

Publication
CENTERIS 2021 - International Conference on ENTERprise Information Systems / ProjMAN 2021 - International Conference on Project MANagement / HCist 2021 - International Conference on Health and Social Care Information Systems and Technologies 2021, Braga, Portugal

Abstract
The detection of ovarian structures from ultrasound images is an important task in gynecological and reproductive medicine. An automatic detection system of ovarian structures can work as a second opinion for less experienced physicians or complex ultrasound interpretations. This work presents a study of three popular CNN-based object detectors applied to the detection of healthy ovarian structures, namely ovary and follicles, in B-mode ultrasound images. The Faster R-CNN presented the best results, with a precision of 95.5% and a recall of 94.7% for both classes, being able to detect all the ovaries correctly. The RetinaNet showed competitive results, exceeding 90% of precision and recall. Despite being very fast and suitable for real-time applications, YOLOv3 was ineffective in detecting ovaries and had the worst results detecting follicles. We also compare CNN results with classical computer vision methods presented in the ovarian follicle detection literature.