Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by José Fernando Oliveira

2015

Dynamic stability metrics for the container loading problem

Authors
Galrao Ramos, AG; Oliveira, JF; Goncalves, JF; Lopes, MP;

Publication
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES

Abstract
The Container Loading Problem (CLP) literature has traditionally evaluated the dynamic stability of cargo by applying two metrics to box arrangements: the mean number of boxes supporting the items excluding those placed directly on the floor (M1) and the percentage of boxes with insufficient lateral support (M2). However, these metrics, that aim to be proxies for cargo stability during transportation, fail to translate real-world cargo conditions of dynamic stability. In this paper two new performance indicators are proposed to evaluate the dynamic stability of cargo arrangements: the number of fallen boxes (NFB) and the number of boxes within the Damage Boundary Curve fragility test (NB_DBC). Using 1500 solutions for well-known problem instances found in the literature, these new performance indicators are evaluated using a physics simulation tool (StableCargo), replacing the real-world transportation by a truck with a simulation of the dynamic behaviour of container loading arrangements. Two new dynamic stability metrics that can be integrated within any container loading algorithm are also proposed. The metrics are analytical models of the proposed stability performance indicators, computed by multiple linear regression. Pearson's r correlation coefficient was used as an evaluation parameter for the performance of the models. The extensive computational results show that the proposed metrics are better proxies for dynamic stability in the CLP than the previous widely used metrics.

2015

Integrated cutting and production planning: A case study in a home textile manufacturing company

Authors
Silva, E; Viães, C; Oliveira, JF; Carravilla, MA;

Publication
Operations Research and Big Data: IO2015-XVII Congress of Portuguese Association of Operational Research (APDIO)

Abstract
In this paper we consider the problem of minimizing the waste of textile material in a Portuguese home textile manufacturing company. The company has a vertical structure covering the different production stages of the home textile, from weaving until the finished products. Production planning comprises different decisions: the definition of the widths and lengths of the fabric rolls to be produced, the number of fabric rolls to be used from stock or purchased and the definition of the cutting patterns to be applied to each width of the fabric roll, so that the waste is minimized. We propose a MIP model, solved by a column generation method, to tackle the problem.

2016

Robust mixed-integer linear programming models for the irregular strip packing problem

Authors
Cherri, LH; Mundim, LR; Andretta, M; Toledo, FMB; Oliveira, JF; Carravilla, MA;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
Two-dimensional irregular strip packing problems are cutting and packing problems where small pieces have to be cut from a larger object, involving a non-trivial handling of geometry. Increasingly sophisticated and complex heuristic approaches have been developed to address these problems but, despite the apparently good quality of the solutions, there is no guarantee of optimality. Therefore, mixed-integer linear programming (MIP) models started to be developed. However, these models are heavily limited by the complexity of the geometry handling algorithms needed for the piece non-overlapping constraints. This led to pieces simplifications to specialize the developed mathematical models. In this paper, to overcome these limitations, two robust MIP models are proposed. In the first model (DTM) the non-overlapping constraints are stated based on direct trigonometry, while in the second model (NFP - CM) pieces are first decomposed into convex parts and then the non-overlapping constraints are written based on nofit polygons of the convex parts. Both approaches are robust in terms of the type of geometries they can address, considering any kind of non-convex polygon with or without holes. They are also simpler to implement than previous models. This simplicity allowed to consider, for the first time, a variant of the models that deals with piece rotations. Computational experiments with benchmark instances show that NFP CM outperforms both DTM and the best exact model published in the literature. New real-world based instances with more complex geometries are proposed and used to verify the robustness of the new models.

2014

A constructive heuristic for staff scheduling in the glass industry

Authors
Rocha, M; Oliveira, JF; Carravilla, MA;

Publication
ANNALS OF OPERATIONS RESEARCH

Abstract
In this paper a constructive heuristic for solving the staff scheduling problem of a glass manufacture unit is proposed. Based on simple calculations and algorithms, the developed procedure assigns working shifts and days-off to teams of employees, ensuring the satisfaction of a mandatory sequence of working shifts and the balance of the workload between employees. The computational times for the experiments with the case study company, with three eight-hour working shifts and five teams of employees, fell consistently below 5 seconds for a set of different planning periods. Results are compared with the ones achieved with an optimization model (MIP), demonstrating the good performance of the heuristic, also in terms of the quality of the achieved solutions. The heuristic rarely fails to produce a feasible solution and whenever the solution is feasible then it is also optimal. When tackling problems with a large number of teams, the heuristic maintains the good performance while the MIP model is not able to find any solution within 16 hours of running time. Although it was designed for a particular problem of the glass industry, tests show that the heuristic is flexible enough to be applied to problems with different features, from other activity sectors, encouraging further extensions of this work.

2017

Cargo dynamic stability in the container loading problem - a physics simulation tool approach

Authors
Ramos, AG; Neto Jacob, JTP; Justo, JF; Oliveira, JF; Rodrigues, R; Gomes, AM;

Publication
Int. J. Simul. Process. Model.

Abstract
The container loading problem (CLP) is a real-world driven, combinatorial optimisation problem that addresses the maximisation of space usage in cargo transport units. The research conducted on this problem failed to fulfill the real needs of the transportation industry, owing to the inadequate representation of practical-relevant constraints. The dynamic stability of cargo is one of the most important practical constraints. It has been addressed in the literature in an over-simplified way which does not translate to real-world stability. This paper proposes a physics simulation tool based on a physics engine, which can be used to translate real-world stability into the CLP. To validate the tool, a set of benchmark tests is proposed and the results obtained with the physics simulation tool are compared to the state-of-the-art simulation engineering software Abaqus Unified FEA. Analytical calculations have been also conducted, and it was also possible to conclude that the tool proposed is a valid alternative. Copyright © 2017 Inderscience Enterprises Ltd.

2014

2DCPackGen: A problem generator for two-dimensional rectangular cutting and packing problems

Authors
Silva, E; Oliveira, JF; Waescher, G;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
Cutting and packing problems have been extensively studied in the literature in recent decades, mainly due to their numerous real-world applications while at the same time exhibiting intrinsic computational complexity. However, a major limitation has been the lack of problem generators that can be widely and commonly used by all researchers in their computational experiments. In this paper, a problem generator for every type of two-dimensional rectangular cutting and packing problems is proposed. The problems are defined according to the recent typology for cutting and packing problems proposed by Wascher, Haussner, and Schumann (2007) and the relevant problem parameters are identified. The proposed problem generator can significantly contribute to the quality of the computational experiments run with cutting and packing problems and therefore will help improve the quality of the papers published in this field.

  • 2
  • 17