Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Tiago Telmo Oliveira

2016

BLUECOM plus : Cost-effective Broadband Communications at Remote Ocean Areas

Authors
Campos, R; Oliveira, T; Cruz, N; Matos, A; Almeida, JM;

Publication
OCEANS 2016 - SHANGHAI

Abstract
The ocean and the Blue Economy are increasingly top priorities worldwide. The immense ocean territory in the planet and its huge associated economical potential is envisioned to increase the activity at the ocean in the forthcoming years. The support of these activities, and the convergence to the Internet of Things paradigm, will demand wireless and mobile communications to connect humans and systems at remote ocean areas. Currently, there is no communications solution enabling cost-effective broadband Internet access at remote ocean areas in alternative to expensive, narrowband satellite communications. This paper presents the maritime communications solution being developed in the BLUECOM+ project. The BLUECOM+ solution enables cost-effective broadband Internet access at remote ocean areas using standard wireless access technologies, e.g., GPRS/UMTS/LTE and Wi-Fi. Its novelty lies on the joint use of TV white spaces for long range radio communications, tethered balloons for lifting communications nodes high above the ocean surface, multi-hop relaying techniques for radio range extension, and standard access networks at the ocean. Simulation results prove it is possible to reach radio ranges beyond 100 km and bitrates in excess of 3 Mbit/s using a two-hop land-sea communications chain.

2016

Tethered Balloons and TV White Spaces: A Solution for Real-time Marine Data Transfer at Remote Ocean Areas

Authors
Teixeira, FB; Oliveira, T; Lopes, M; Ruela, J; Campos, R; Ricardo, M;

Publication
2016 IEEE THIRD UNDERWATER COMMUNICATIONS AND NETWORKING CONFERENCE (UCOMMS)

Abstract
Autonomous Underwater Vehicles and Remotely Operated Vehicles are useful in industries such as offshore Oil and Gas, deep sea mining, and aquaculture, where inspection missions are frequent. While underwater communications are mainly done using acoustic links, retrieving data from these devices to shore is still an open issue, especially when we consider the high cost of satellite communications. In this paper, using ns-3 simulations, we evaluate the ability of the communications solution being developed in the BLUECOM+ project to enable real-time marine data transfer at remote ocean areas. Through the usage of tethered balloons, TV white spaces frequencies, and multi-hop communications, the BLUECOM+ solution enables cost-effective, broadband connectivity to the Internet at remote ocean areas, using standard access technologies such as GPRS/UMTS/LTE and Wi-Fi. Simulation results show an expected range exceeding 100 km from shore using only two nodes at sea, with bitrates over 1 Mbit/s.

2017

Enabling Broadband Internet Access Offshore using Tethered Balloons: The BLUECOM plus experience

Authors
Teixeira, FB; Oliveira, T; Lopes, M; Leocadio, C; Salazar, P; Ruela, J; Campos, R; Ricardo, M;

Publication
OCEANS 2017 - ABERDEEN

Abstract
The growth of the Blue Economy has been boosted by a set of traditional and new activities including maritime transportation, fisheries, environmental monitoring, deep sea mining, and inspection missions. These activities are urging for a cost-effective broadband communications solution capable of supporting both above and underwater missions at remote ocean areas, since many of them rely on an ever-increasing number of Autonomous Surface Vehicles (ASV), Autonomous Underwater Vehicles (AUV) and Remote Operated Vehicles (ROV), which need to transmit large amounts of data to shore. The BLUE-COM+ project has considered the usage of helium balloons to increase the antenna height, and overtake the earth curvature and achieve Fresnel zone clearance, combined with the use of sub-GHz frequency bands to enable long range communications. In this paper we present the results obtained in three sea trials. They show that the BLUECOM+ architecture is capable of supporting human and system activities at remote ocean areas by enabling Internet access beyond 50 km from shore, live video conference calls with the quality of experience available on land, and real-time data upload to the cloud by ASVs, AUVs and ROVs using standard access technologies with bitrates above 1 Mbit/s.

2019

Repeatable and Reproducible Wireless Networking Experimentation through Trace-based Simulation

Authors
Lamela, V; Fontes, H; Oliveira, T; Ruela, J; Ricardo, M; Campos, R;

Publication
2019 INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB)

Abstract
To properly validate wireless networking solutions we depend on experimentation. Simulation very often produces less accurate results due to the use of models that are simplifications of the real phenomena they try to model. Networking experimentation may offer limited repeatability and reproducibility. Being influenced by external random phenomena such as noise, interference, and multipath, real experiments are hardly repeatable. In addition, they are difficult to reproduce due to testbed operational constraints and availability. Without repeatability and reproducibility, the validation of the networking solution under evaluation is questionable. In this paper, we show how the Trace-based Simulation (TS) approach can be used to accurately repeat and reproduce real experiments and, consequently, introduce a paradigm shift when it comes to the evaluation of wireless networking solutions. We present an extensive evaluation of the TS approach using the Fed4FIRE+ w-iLab.2 testbed. The results show that it is possible to repeat and reproduce real experiments using Network Simulator 3 (ns-3) trace-based simulations with more accuracy than in pure simulation, with average accuracy gains above

2019

A Token-Based MAC Solution for WiLD Point-To-Multipoint Links

Authors
Leocadio, C; Oliveira, T; da Silva, PM; Campos, R; Ruela, J;

Publication
CoRR

Abstract