Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Mariana Rafaela Oliveira

2015

Automatized and desktop AC-susceptometer for the in situ and real time monitoring of magnetic nanoparticles' synthesis by coprecipitation

Authors
Fernandez Garcia, MP; Teixeira, JM; Machado, P; Oliveira, MRFF; Maia, JM; Pereira, C; Pereira, AM; Freire, C; Araujo, JP;

Publication
REVIEW OF SCIENTIFIC INSTRUMENTS

Abstract
The main purpose of this work was to design, develop, and construct a simple desktop AC susceptometer to monitor in situ and in real time the coprecipitation synthesis of magnetic nanoparticles. The design incorporates one pair of identical pick-up sensing coils and one pair of Helmholtz coils. The picked up signal is detected by a lock-in SR850 amplifier that measures the in-and out-of-phase signals. The apparatus also includes a stirrer with 45 degrees-angle blades to promote the fast homogenization of the reaction mixture. Our susceptometer has been successfully used to monitor the coprecipitation reaction for the synthesis of iron oxide nanoparticles. (C) 2015 AIP Publishing LLC.

2014

Ensembles for Time Series Forecasting

Authors
Oliveira, M; Torgo, L;

Publication
Proceedings of the Sixth Asian Conference on Machine Learning, ACML 2014, Nha Trang City, Vietnam, November 26-28, 2014.

Abstract
This paper describes a new type of ensembles that aims at improving the predictive performance of these approaches in time series forecasting. Ensembles are recognised as one of the most successful approaches to prediction tasks. Previous theoretical studies of ensembles have shown that one of the key reasons for this performance is diversity among ensemble members. Several methods exist to generate diversity. The key idea of the work we are presenting here is to propose a new form of diversity generation that explores some specific properties of time series prediction tasks. Our hypothesis is that the resulting ensemble members will be better at addressing different dynamic regimes of time series data. Our large set of experiments confirms that the methods we have explored for generating diversity are able to improve the performance of the equivalent ensembles with standard diversity generation procedures. © 2014 M. Oliveira & L. Torgo.

2016

Predicting Wildfires Propositional and Relational Spatio-Temporal Pre-processing Approaches

Authors
Oliveira, M; Torgo, L; Costa, VS;

Publication
DISCOVERY SCIENCE, (DS 2016)

Abstract
We present and evaluate two different methods for building spatio-temporal features: a propositional method and a method based on propositionalisation of relational clauses. Our motivating application, a regression problem, requires the prediction of the fraction of each Portuguese parish burnt yearly by wildfires - a problem with a strong socio-economic and environmental impact in the country. We evaluate and compare how these methods perform individually and combined together. We successfully use under-sampling to deal with the high skew in the data set. We find that combining the approaches significantly improves the similar results obtained by each method individually.

2016

Development of an autonomous system for integrated marine monitoring

Authors
Catarina, M; Ana Paula, M; Maria, C; Hugo, R; Cristina, A; Isabel, A; Sandra, R; Teresa, B; Sérgio, L; Antonina, DS; Alexandra, S; Cátia, B; Sónia, C; Raquel, M; Catarina, C; André, D; Hugo, F; Ireneu, D; Luís, T; Mariana, O; Nuno, D; Pedro, J; Alfredo, M; Eduardo, S;

Publication
Frontiers in Marine Science

Abstract

2017

Dynamic and Heterogeneous Ensembles for Time Series Forecasting

Authors
Cerqueira, V; Torgo, L; Oliveira, M; Pfahringer, B;

Publication
2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA)

Abstract
This paper addresses the issue of learning time series forecasting models in changing environments by leveraging the predictive power of ensemble methods. Concept drift adaptation is performed in an active manner, by dynamically combining base learners according to their recent performance using a non-linear function. Diversity in the ensembles is encouraged with several strategies that include heterogeneity among learners, sampling techniques and computation of summary statistics as extra predictors. Heterogeneity is used with the goal of better coping with different dynamic regimes of the time series. The driving hypotheses of this work are that (i) heterogeneous ensembles should better fit different dynamic regimes and (ii) dynamic aggregation should allow for fast detection and adaptation to regime changes. We extend some strategies typically used in classification tasks to time series forecasting. The proposed methods are validated using Monte Carlo simulations on 16 real-world univariate time series with numerical outcome as well as an artificial series with clear regime shifts. The results provide strong empirical evidence for our hypotheses. To encourage reproducibility the proposed method is publicly available as a software package.

2019

Evaluation Procedures for Forecasting with Spatio-Temporal Data

Authors
Oliveira, M; Torgo, L; Costa, VS;

Publication
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I

Abstract
The amount of available spatio-temporal data has been increasing as large-scale data collection (e.g., from geosensor networks) becomes more prevalent. This has led to an increase in spatio-temporal forecasting applications using geo-referenced time series data motivated by important domains such as environmental monitoring (e.g., air pollution index, forest fire risk prediction). Being able to properly assess the performance of new forecasting approaches is fundamental to achieve progress. However, the dependence between observations that the spatio-temporal context implies, besides being challenging in the modelling step, also raises issues for performance estimation as indicated by previous work. In this paper, we empirically compare several variants of cross-validation (CV) and out-of-sample (OOS) performance estimation procedures that respect data ordering, using both artificially generated and real-world spatio-temporal data sets. Our results show both CV and OOS reporting useful estimates. Further, they suggest that blocking may be useful in addressing CV's bias to underestimate error. OOS can be very sensitive to test size, as expected, but estimates can be improved by careful management of the temporal dimension in training.

  • 1
  • 2