Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Vítor Grade Tavares

2015

A Low-Power Multi-Tanh OTA with Very Low Harmonic Distortion

Authors
Kianpour, I; Hussain, B; Tavares, VG; Mendonca, HS;

Publication
2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)

Abstract
This paper presents a wide input range, low-power operational transconductance amplifier (OTA) in weak inversion. The OTA is implemented with tanh-triplets differential pairs, degenerated by a composite configuration to augment the input linear range, thus reducing further the harmonic distortion. Using MATLAB, the mismatch factor (A) of a typical multi-tanh triplet has been optimised for minimum harmonic distortion. The OTA is designed in UMC 0.13um CMOS technology with 1.2V supply. Simulations show that the input range can be extended to 300 mV, while keeping the HD3 below -80 dB. The average power consumption is 13nW, with an open loop-gain of 76 dB and a unity gain frequency of 250 Hz. The low harmonic distortion OTA can find potential applications in low-power and long time constant filters.

2014

A Time Synchronization Circuit with an Average 4.6 ns One-Hop Skew for Wired Wearable Networks

Authors
Derogarian, F; Ferreira, JC; Grade Tavares, VMG;

Publication
2014 17TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD)

Abstract
This paper describes and evaluates a fully digital circuit for one-way master-to-slave highly precise time synchronization in a low-power, wearable system equipped with a set of sensor nodes connected in a mesh network. Sensors are connected to each other with conductive yarns that are used as one-wire bidirectional communication links. The circuit is designed to perform synchronization in the Medium Access Control (MAC) layer. In each sensor node, the synchronization circuit provides a synchronized, programmable clock signal and a real-time counter for time stamping. Experimental results obtained with an implementation in 0.35 mu m CMOS technology for a network of electromyography sensors show that the circuit keeps the one-hop average clock skew below 4.6 ns, a value small enough to satisfy many wearable application requirements.

2014

Transparent Current Mirrors Using a-GIZO TFTs: Simulation with RBF Models and Fabrication

Authors
Bahubalindruni, P; Tavares, V; Duarte, C; Cardoso, N; Oliveira, P; Frias, R; Barquinha, P; Martins, R; Fortunato, E;

Publication
2014 UKSIM-AMSS 16TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM)

Abstract
This paper analyzes transparent two-TFT current mirrors using a-GIZO TFTs with different mirroring ratios. In order to achieve a high mirroring ratio, the output TFT in the circuit employed a fingered structure layout to minimize area and overlap capacitance. The analysis of the current mirrors is performed in three phases. In the first, a radial basis function based (RBF) model is developed using measured data from fabricated TFTs on the same chip. Then, in the second phase, the RBF model is implemented in Verilog-A that is used to simulate two-TFT current mirrors with different mirroring ratios. The simulations are carried out using Cadence spectre simulator. In the third phase, simulation results are validated with the measured response from the fabricated circuits.

2013

Transparent Current Mirrors With a-GIZO TFTs: Neural Modeling, Simulation and Fabrication

Authors
Bahubalindruni, PG; Tavares, VG; Barquinha, P; Duarte, C; de Oliveira, PG; Martins, R; Fortunato, E;

Publication
JOURNAL OF DISPLAY TECHNOLOGY

Abstract
This paper characterizes transparent current mirrors with n-type amorphous gallium-indium-zinc-oxide (a-GIZO) thin-film transistors (TFTs). Two-TFT current mirrors with different mirroring ratios and a cascode topology are considered. A neural model is developed based on the measured data of the TFTs and is implemented in Verilog-A; then it is used to simulate the circuits with Cadence Virtuoso Spectre simulator. The simulation outcomes are validated with the fabricated circuit response. These results show that the neural network can model TFT accurately, as well as the current mirroring ability of the TFTs.

2013

Wearable monitoring system for locomotion rehabilitation

Authors
Catarino, A; Rocha, AM; Abreu, MJ; da Silva, JM; Ferreira, JC; Tavares, VG; Correia, MV; Zambrano, A; Derogarian, F; Dias, R;

Publication
OCCUPATIONAL SAFETY AND HYGIENE

Abstract
Human motion capture systems are used by medical staff for detecting and identifying mobility impairments, early stages of certain pathologies and can also be used for evaluation of the effectiveness of surgical or rehabilitation intervention. Other applications may involve athlete's performance, occupational safety, among others. Presently there is a considerable number of solutions available, however these systems present some drawbacks, as they are often expensive, considerably complex, difficult to wear and use in a daily basis, and very uncomfortable for the patient. With the purpose of solving the above mentioned problems, a new wearable locomotion data capture system for gait analysis is under development. This system will allow the measurement of several locomotion-related parameters in a practical and non-invasive way, comfortable to the user, which will also be reusable that can be used by patients from light to severe impairments or disabilities. The present paper gives an overview of the research that is being developed, regarding the design of the wearable equipment, textile support, and communications.

2016

InGaZnO Thin-Film-Transistor-Based Four-Quadrant High-Gain Analog Multiplier on Glass

Authors
Bahubalindruni, PG; Tavares, VG; Borme, J; de Oliveira, PG; Martins, R; Fortunato, E; Barquinha, P;

Publication
IEEE ELECTRON DEVICE LETTERS

Abstract
This letter presents a novel high-gain four-quadrant analog multiplier using only n-type enhancement indium-gallium-zinc-oxide thin-film-transistors. The proposed circuit improves the gain by using an active load with positive feedback. A Gilbert cell with a diode-connected load is also presented for comparison purposes. Both circuits were fabricated on glass at low temperature (200 degrees C) and were successfully characterized at room temperature under normal ambient conditions, with a power supply of 15 V and 4-pF capacitive load. The novel circuit has shown a gain improvement of 7.2 dB over the Gilbert cell with the diode-connected load. Static linearity response, total harmonic distortion, frequency response, and power consumption are reported. This circuit is an important signal processing building block in large-area sensing and readout systems, specially if data communication is involved.

  • 2
  • 12