Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by David Emanuel Rua

2017

Multi-temporal Optimal Power Flow for voltage control in MV networks using Distributed Energy Resources

Authors
Meirinhos, JL; Rua, DE; Carvalho, LM; Madureira, AG;

Publication
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
Large-scale integration of variable Renewable Energy Sources (RES) brings significant challenges to grid operation that require new approaches and tools for distribution system management, particularly concerning voltage control. Therefore, an innovative approach for voltage control at the MV level is presented. It is based on a preventive day-ahead analysis that uses data from load/RES forecasting tools to establish a plan for operation of the different Distributed Energy Resources (DER) for the next day. The approach is formulated as a multi-temporal Optimal Power Flow (OPF) solved by a meta-heuristic, used to tackle complex multi-dimensional problems. The tuning of the meta-heuristic parameters was performed to ensure the robustness of the proposed approach and enhance the performance of the algorithm. It was tested through simulation in a large scale test network with good results.

2014

A peer-to-peer service architecture for the Smart Grid

Authors
Campos, F; Matos, M; Pereira, J; Rua, D;

Publication
14-TH IEEE INTERNATIONAL CONFERENCE ON PEER-TO-PEER COMPUTING (P2P)

Abstract
Important challenges in interoperability, reliability, and scalability need to be addressed before the Smart Grid vision can be fulfilled. The sheer scale of the electric grid and the criticality of the communication among its subsystems for proper management, demands a scalable and reliable communication framework able to work in an heterogeneous and dynamic environment. Moreover, the need to provide full interoperability between diverse current and future energy and non-energy systems, along with seamless discovery and configuration of a large variety of networked devices, ranging from the resource constrained sensing devices to servers in data centers, requires an implementation-agnostic Service Oriented Architecture. In this position paper we propose that this challenge can be addressed with a generic framework that reconciles the reliability and scalability of Peer-to-Peer systems, with the industrial standard interoperability of Web Services. We illustrate the flexibility of the proposed framework by showing how it can be used in two specific scenarios.

2013

PACE: Simple Multi-hop Scheduling for Single-radio 802.11-based Stub Wireless Mesh Networks

Authors
Ribeiro, F; Campos, R; Rua, D; Pinho, C; Ruela, J;

Publication
2013 IEEE 9TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB)

Abstract
IEEE 802.11-based Stub Wireless Mesh Networks (WMNs) are a cost-effective and flexible solution to extend wired network infrastructures. Yet, they suffer from two major problems: inefficiency and unfairness. A number of approaches have been proposed to tackle these problems, but they are too restrictive, highly complex, or require time synchronization and modifications to the IEEE 802.11 MAC. PACE is a simple multi-hop scheduling mechanism for Stub WMNs overlaid on the IEEE 802.11 MAC that jointly addresses the inefficiency and unfairness problems. It limits transmissions to a single mesh node at each time and ensures that each node has the opportunity to transmit a packet in each network-wide transmission round. Simulation results demonstrate that PACE can achieve optimal network capacity utilization and greatly outperforms state of the art CSMA/CA-based solutions as far as goodput, delay, and fairness are concerned.

2017

AnyPLACE - An Energy Management System to Enhance Demand Response Participation

Authors
Abreu, C; Rua, D; Costa, T; Machado, P; Pecas Lopes, JAP; Heleno, M;

Publication
2017 IEEE MANCHESTER POWERTECH

Abstract
This paper describes an energy management system that is being developed in the AnyPLACE project to support new energy services, like demand response, in residential buildings. In the project end-user interfaces are designed and implemented to allow the input of preferences regarding the flexible use of shiftable and thermal appliances. Monitoring and self-learning algorithm are used to allow additional information to be collected and an automation platform is available for the management and control of appliances. An energy management algorithm is presented that processes end-user preferences and devices characteristics to produce an optimal dispatch considering demand response incentives. Results show the successful implementation of an optimized energy scheduling.

2016

Automation and User Interaction Schemes for Home Energy Management - A Combined Approach

Authors
Rua, D; Abreu, C; Costa, T; Heleno, M;

Publication
2016 IEEE 21ST INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA)

Abstract
This paper presents the development framework for an energy management platform that is being developed within the AnyPLACE project. In order to ensure that end-users become active participants in services like demand response, a combined approach is necessary in terms of monitoring, automation, and user interfacing. The success in engaging the end-user, as the centerpiece of the energy management challenge, is vital in taking advantage of a more efficient use of energy, as it is shown in this paper. The proposed framework can be run in a single board computer.

2015

Optimizing PV Self-Consumption through Electric Water Heater Modeling and Scheduling

Authors
Heleno, M; Rua, D; Gouveia, C; Madureira, A; Matos, MA; Lopes, JP; Silva, N; Salustio, S;

Publication
2015 IEEE EINDHOVEN POWERTECH

Abstract
This paper aims at presenting a Home Energy Management System ( HEMS) module capable of scheduling electric water heater ( EWH) appliances in order to optimize the PV self-consumption. A multi-period optimization model is presented. Laboratory tests were conducted to validate the model and to demonstrate the capability of this HEMS module to address recent challenges of self-consumption in a domestic environment. A commercial EWH device developed by Bosch communicating with the HEMS module is used to perform the tests.

  • 2
  • 5