Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

Vítor Amorim received the B.S. and MSc degrees from University of Porto, Portugal, in 2014 and 2016, respectively. He is currently working towards his Ph.D. degree at the same institution. He is a collaborator of INESC TEC since 2015. His current research interests include the fabrication of integrated optical devices in fused silica by femtosecond laser direct writing.

Interest
Topics
Details

Details

001
Publications

2019

Loss Mechanisms of Optical Waveguides Inscribed in Fused Silica by Femtosecond Laser Direct Writing

Authors
Amorim, VA; Maia, JM; Viveiros, D; Marques, PVS;

Publication
Journal of Lightwave Technology

Abstract

2019

High Performance Titanium oxide coated D-shaped Optical Fiber Plasmonic Sensor

Authors
Gangwar, RK; Amorim, VA; Marques, P;

Publication
IEEE Sensors Journal

Abstract

2019

Spectral Tuning of Long Period Fiber Gratings Fabricated by Femtosecond Laser Micromachining through Thermal Annealing

Authors
Viveiros, D; Almeida, JMMMd; Coelho, L; Vasconcelos, H; Amorim, VA; Maia, JM; Jorge, PAS;

Publication
Proceedings

Abstract
A femtosecond laser direct writing system was developed to explore the fabrication of long-period fiber gratings (LPFGs) in SMF28 fibers. The LPFGs, showing the mode LP1,6 at 1500 nm, were exposed to high-temperature annealing up to 950 °C. Modifications in the refractive index (RI) modulation are observed through a blue-shift in the LPFG attenuation bands and above 850 °C, the mode LP1,7 appear at 1600 nm. The wavelength sensitivity to external RI from 1.300 to 1.452 was estimated for both modes before and after annealing. Greater sensitivity was found for the higher order mode in the entire range reaching 2400 nm/RIU around 1.440.

2018

Fabrication of Monolithic Add-Drop Filters in Pure Silica by Femtosecond Laser Writing

Authors
Marques, PVS; Amorim, VA; Maia, JM; Alexandre, D; Viveiros, D;

Publication
International Conference on Transparent Optical Networks

Abstract
This paper will review the fabrication of monolithic integrated optical devices by laser direct writing with femtosecond pulsed laser sources, starting with the description of experimental procedures and optimal conditions to fabricate low loss optical waveguides, directional couplers, Y-junctions and first order Bragg gratings by point-by-point writing methods. Finally, the characterization results of a fully operational Add-Drop filter in pure fused silica substrate are described. © 2018 IEEE.

2017

Optimization of Broadband Y-Junction Splitters in Fused Silica by Femtosecond Laser Writing

Authors
Amorim, VA; Maia, JM; Alexandre, D; Marques, PVS;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
Optical Y-junction power splitters owe their inherent broadband spectral behavior to their design. However, depending on the fabrication technique employed, asymmetries in the junction might arise, perturbing its performance; this is the case in femtosecond laser written Y-junctions where one arm is typically written over the top of the other. In this letter, the spectral behavior of Y-junctions fabricated in fused silica by the femtosecond laser direct writing technique was analyzed and optimized for the first time, to the best of our knowledge. The junction arms output power balance as well as the corresponding spectral flatness between 1300 and 1600 nm is substantially increased by the implementation of an initial separation between the arms at the junction diverging point, enabling the manufacturing of balanced broadband Y-junctions.