Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Vítor Amorim received the B.S. and MSc degrees from University of Porto, Portugal, in 2014 and 2016, respectively. He is currently working towards his Ph.D. degree at the same institution. He is a collaborator of INESC TEC since 2015. His current research interests include the fabrication of integrated optical devices in fused silica by femtosecond laser direct writing.

Interest
Topics
Details

Details

  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    vitor.a.amorim@inesctec.pt
002
Publications

2020

Magnetic field sensors in fused silica fabricated by femtosecond laser micromachining

Authors
Maia, JM; Amorim, VA; Viveiros, D; Marques, PVS;

Publication
Journal of Physics: Photonics

Abstract

2020

Femtosecond laser direct written off-axis fiber Bragg gratings for sensing applications

Authors
Viveiros, D; Amorim, VA; Maia, JM; Silva, S; Frazão, O; Jorge, PAS; Fernandes, LA; Marques, PVS;

Publication
Optics and Laser Technology

Abstract
First order off-axis fiber Bragg gratings (FBGs) were fabricated in a standard single mode fiber (SMF-28e) through femtosecond laser direct writing. A minimum offset distance between the grating and core center of 2.5 µm was found to create a multimode section, which supports two separate fiber modes (LP0,1 and LP1,1), each split into two degenerate polarization modes. The resulting structure breaks the cylindrical symmetry of the fiber, introducing birefringence (˜10-4) resulting in a polarization dependent Bragg wavelength for each mode. Based on the modal and birefringence behavior, three off-axis FBGs were fabricated with 3.0, 4.5 and 6.0 µm offsets from the core center, and then characterized in strain, temperature, and curvature. The tested off-axis FBGs exhibited a similar strain sensitivity of ~1.14 pm/µ? and a temperature sensitivity of ~12 pm/C. The curvature and orientation angle were simultaneously monitored by analyzing the intensity fluctuation and the wavelength shift of the LP1,1 Bragg resonance. A maximum curvature sensitivity of 0.53 dB/m-1 was obtained for the off-axis FBG with a 3.0 µm offset. © 2020 Elsevier Ltd

2020

Femtosecond laser-written long period fibre gratings coated with titanium dioxide for improved sensitivity

Authors
Viveiros, D; Almeida, JMd; Coelho, L; Vasconcelos, H; Amorim, VA; Maia, JM; Jorge, PA; Marques, PVS;

Publication
Optical Sensing and Detection VI

Abstract

2019

Loss Mechanisms of Optical Waveguides Inscribed in Fused Silica by Femtosecond Laser Direct Writing

Authors
Amorim, VA; Maia, JM; Viveiros, D; Marques, PVS;

Publication
Journal of Lightwave Technology

Abstract

2019

High Performance Titanium oxide coated D-shaped Optical Fiber Plasmonic Sensor

Authors
Gangwar, RK; Amorim, VA; Marques, PVS;

Publication
IEEE Sensors Journal

Abstract