Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

Rolando Martins studied at Faculty of Science of the University of Porto (FCUP), where he also obtained his M.Sc in Informatics: Networks and Systems. As part of his Masters thesis (YapDss), he researched the field of distributed stack splitting in Prolog, exploring OrParallelism. He also worked at EFACEC as a software engineer/architect and later as a systems researcher. He obtained his Ph.D in Computer Sci- ence from FCUP, as a part of a collaborative effort between FCUP, EFACEC and Carnegie Mellon University (CMU), under the supervision of Fernando Silva, Luís Lopes and Priya Narasimhan. His Ph.D. research topic arose from his employment at EFACEC, where he was exposed to the difficulties underlying today’s railway systems and light-rail deployments, and came to understand the scientific challenges and the impact, of addressing the issues of simultaneously supporting real-time and fault-tolerance in such systems. He is a former member of the the Intel Science and Technology Center (ISTC), where he was involved in both Cloud Computing and Embedded Computing centers, and Parallel Data Lab (PDL) at CMU. At the same time, he was also a computer research scientist at YinZcam, a spinoff from CMU that provided mobile applications for the NBA, NHL, NFL and MLS, where he was involved on cloud computing, content management systems, OAuth and video streaming. He is currently an invited assistant professor at the department of Computer Science at FCUP and researcher at CRACS (Center for Research in Advanced Computing Systems) part of INESC TEC. Some of his research interests include security, privacy, intrusion tolerance, (secure) distributed systems, edge clouds, P2P, IoT, cloud-computing, fault-tolerance (byzantine and non-byzantine), operating systems (with special interest in the Linux kernel).

Interest
Topics
Details

Details

001
Publications

2018

Panoptic, Privacy over Edge-Clouds

Authors
Freitas, T; Rodrigues, J; Bogas, D; Coimbra, M; Martins, R;

Publication
6th IEEE International Conference on Future Internet of Things and Cloud, FiCloud 2018, Barcelona, Spain, August 6-8, 2018

Abstract

2018

Reputation-Based Security System For Edge Computing

Authors
Nwebonyi, FN; Martins, R; Correia, ME;

Publication
Proceedings of the 13th International Conference on Availability, Reliability and Security, ARES 2018, Hamburg, Germany, August 27-30, 2018

Abstract

2017

Using Edge-Clouds to Reduce Load on Traditional WiFi Infrastructures and Improve Quality of Experience

Authors
Pinto Silva, PMP; Rodrigues, J; Silva, J; Martins, R; Lopes, L; Silva, F;

Publication
1st IEEE International Conference on Fog and Edge Computing, ICFEC 2017, Madrid, Spain, May 14-15, 2017

Abstract
Crowd-sourcing the resources of mobile devices is a hot topic of research given the game-changing applications it may enable. In this paper we study the feasibility of using edge-clouds of mobile devices to reduce the load in traditional WiFi infrastructures for video dissemination applications. For this purpose, we designed and implemented a mobile application for video dissemination in sport venues that retrieves replays from a central server, through the access points in the WiFi infrastructure, into a smartphone. The fan's smartphones organize themselves into WiFi-Direct groups and exchange video replays whenever possible, bypassing the central server and access points. We performed a real-world experiment using the live TV feed for the Champions League game Benfica-Besiktas with the help of a group of volunteers using the application at the student's union lounge. The analysis of the logs strongly suggests that edge-clouds can significantly reduce the load in the access points at such large venues and improve quality of experience. Indeed, the edge-clouds formed were able to serve up to 80% of connected users and provide 56% of all downloads requested from within. © 2017 IEEE.

2017

The present and future of privacy-preserving computation in fog computing

Authors
Sousa, PR; Antunes, L; Martins, R;

Publication
Fog Computing in the Internet of Things: Intelligence at the Edge

Abstract

2016

Benchmarking Wireless Protocols for Feasibility in Supporting Crowdsourced Mobile Computing

Authors
Rodrigues, J; Silva, J; Martins, R; Lopes, L; Drolia, U; Narasimhan, P; Silva, F;

Publication
DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS, DAIS 2016

Abstract
Recent advances in mobile device technology have triggered research on using their aggregate computational and/or storage resources to form edge-clouds. Whilst traditionally viewed as simple clients, smart-phones and tablets today have hardware resources that allow more sophisticated software to be installed, and can be used as thick clients or even thin servers. Simultaneously, new standards and protocols, such as Wi-Fi Direct and Wi-Fi TDLS (Tunneled Direct Link Setup), have been established that allow mobile devices to talk directly with each other, as opposed to over the Internet or across Wi-Fi access points. This can, potentially, lead to ubiquitous, low-latency, device-to-device (D2D) communication. In this paper, we study whether D2D protocols can support mobile-edge clouds by benchmarking different protocols and configurations for a specific application. The results show that decentralized device-to-device techniques can be used to efficiently disseminate multimedia contents while diminishing contention in the wireless infrastructure, allowing for up to 65% traffic reduction at the access points.