Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

Rolando Martins studied at Faculty of Science of the University of Porto (FCUP), where he also obtained his M.Sc in Informatics: Networks and Systems. As part of his Masters thesis (YapDss), he researched the field of distributed stack splitting in Prolog, exploring OrParallelism. He also worked at EFACEC as a software engineer/architect and later as a systems researcher. He obtained his Ph.D in Computer Sci- ence from FCUP, as a part of a collaborative effort between FCUP, EFACEC and Carnegie Mellon University (CMU), under the supervision of Fernando Silva, Luís Lopes and Priya Narasimhan. His Ph.D. research topic arose from his employment at EFACEC, where he was exposed to the difficulties underlying today’s railway systems and light-rail deployments, and came to understand the scientific challenges and the impact, of addressing the issues of simultaneously supporting real-time and fault-tolerance in such systems. He is a former member of the the Intel Science and Technology Center (ISTC), where he was involved in both Cloud Computing and Embedded Computing centers, and Parallel Data Lab (PDL) at CMU. At the same time, he was also a computer research scientist at YinZcam, a spinoff from CMU that provided mobile applications for the NBA, NHL, NFL and MLS, where he was involved on cloud computing, content management systems, OAuth and video streaming. He is currently an invited assistant professor at the department of Computer Science at FCUP and researcher at CRACS (Center for Research in Advanced Computing Systems) part of INESC TEC. Some of his research interests include security, privacy, intrusion tolerance, (secure) distributed systems, edge clouds, P2P, IoT, cloud-computing, fault-tolerance (byzantine and non-byzantine), operating systems (with special interest in the Linux kernel).

Interest
Topics
Details

Details

  • Name

    Rolando Martins
  • Cluster

    Computer Science
  • Role

    Senior Researcher
  • Since

    01st April 2012
002
Publications

2019

Reputation-Based Security System For Edge Computing

Authors
Nwebonyi, FN; Martins, R; Correia, ME;

Publication
Proceedings of the 13th International Conference on Availability, Reliability and Security, ARES 2018, Hamburg, Germany, August 27-30, 2018

Abstract

2019

pTASC: trustable autonomous secure communications

Authors
Sousa, PR; Cirne, A; Resende, JS; Martins, R; Coelho Antunes, LF;

Publication
Proceedings of the 20th International Conference on Distributed Computing and Networking, ICDCN 2019, Bangalore, India, January 04-07, 2019

Abstract

2019

pTASC

Authors
Sousa, PR; Cirne, A; Resende, JS; Martins, R; Antunes, L;

Publication
Proceedings of the 20th International Conference on Distributed Computing and Networking - ICDCN '19

Abstract

2019

Iris: Secure reliable live-streaming with opportunistic mobile edge cloud offloading

Authors
Martins, R; Correia, ME; Antunes, L; Silva, F;

Publication
Future Generation Computer Systems

Abstract
The ever-increasing demand for higher quality live streams is driving the need for better networking infrastructures, specially when disseminating content over highly congested areas, such as stadiums, concerts and museums. Traditional approaches to handle this type of scenario relies on a combination of cellular data, through 4G distributed antenna arrays (DAS), with a high count of WiFi (802.11) access points. This obvious requires a substantial upfront cost for equipment, planning and deployment. Recently, new efforts have been introduced to securely leverage the capabilities of wireless multipath, including WiFi multicast, 4G, and device-to-device communications. In order to solve these issues, we propose an approach that lessens the requirements imposed on the wireless infrastructures while potentially expanding wireless coverage through the crowd-sourcing of mobile devices. In order to achieve this, we propose a novel pervasive approach that combines secure distributed systems, WiFi multicast, erasure coding, source coding and opportunistic offloading that makes use of hyperlocal mobile edge clouds. We empirically show that our solution is able to offer a 11 fold reduction on the infrastructural WiFi bandwidth usage without having to modify any existing software or firmware stacks while ensuring stream integrity, authorization and authentication. © 2019 Elsevier B.V.

2019

Reputation based approach for improved fairness and robustness in P2P protocols

Authors
Nwebonyi, FN; Martins, R; Correia, ME;

Publication
Peer-to-Peer Networking and Applications

Abstract
Peer-to-Peer (P2P) overlay networks have gained popularity due to their robustness, cost advantage, network efficiency and openness. Unfortunately, the same properties that foster their success, also make them prone to several attacks. To mitigate these attacks, several scalable security mechanisms which are based on the concepts of trust and reputation have been proposed. These proposed methods tend to ignore some core practical requirements that are essential to make them more useful in the real world. Some of such requirements include efficient bootstrapping of each newcomer’s reputation, and mitigating seeder(s) exploitation. Additionally, although interaction among participating peers is usually the bases for reputation, the importance given to the frequency of interaction between the peers is often minimized or ignored. This can result in situations where barely known peers end-up having similar trust scores to the well-known and consistently cooperative nodes. After a careful review of the literature, this work proposes a novel and scalable reputation based security mechanism that addresses the aforementioned problems. The new method offers more efficient reputation bootstrapping, mitigation of bandwidth attack and better management of interaction rate, which further leads to improved fairness. To evaluate its performance, the new reputation model has been implemented as an extension of the BitTorrent protocol. Its robustness was tested by exposing it to popular malicious behaviors in a series of extensive PeerSim simulations. Results show that the proposed method is very robust and can efficiently mitigate popular attacks on P2P overlay networks. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.