Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

002
Publications

2021

A Mathematical Model to Evaluate Visual Sensing Coverage of Emergency Signs on Moving Vehicles

Authors
Costa, DG; Vasques, F; Portugal, P;

Publication
IEEE International Smart Cities Conference, ISC2 2021, Manchester, United Kingdom, September 7-10, 2021

Abstract
Emergency vehicles have been employed in rescue operations and supportive services, attending victims and managing critical situations in smart cities. Such vehicles, notably ambulances, fire trucks, police cars and transit agents vehicles, may be tracked and monitored in some applications for different functions. When such emergency vehicles are not equipped with GPS receivers, cameras can be used to view emergency signs printed on them, allowing indirect identification of emergency vehicles, although many complexities have to be considered when performing visual sensors-based tracking and monitoring. In this context, this paper proposes a mathematical model focused on the evaluation of the coverage efficiency of a group of visual sensors over moving vehicles, aimed at visual coverage of emergency signs. For that, vehicles, emergency signs and visual sensors are mathematically modelled in this paper, with coverage interactions among these elements being computed based on proposed geometry equations and algorithms. Doing so, the effectiveness of the positioning and configurations of visual sensors can be evaluated without requiring actual deployment, potentially reducing costs when assessing visual monitoring systems in this scenario. © 2021 IEEE.

2020

A Distributed Multi-Tier Emergency Alerting System Exploiting Sensors-Based Event Detection to Support Smart City Applications

Authors
Costa, DG; Vasques, F; Portugal, P; Aguiar, A;

Publication
Sensors

Abstract
The development of efficient sensing technologies and the maturation of the Internet of Things (IoT) paradigm and related protocols have considerably fostered the expansion of sensor-based monitoring applications. A great number of those applications has been developed to monitor a set of information for better perception of the environment, with some of them being dedicated to identifying emergency situations. Current IoT-based emergency systems have limitations when considering the broader scope of smart cities, exploiting one or just a few monitoring variables or even allocating high computational burden to regular sensor nodes. In this context, we propose a distributed multi-tier emergency alerting system built around a number of sensor-based event detection units, providing real-time georeferenced information about the occurrence of critical events, while taking as input a configurable number of different scalar sensors and GPS data. The proposed system could then be used to detect and to deliver emergency alarms, which are computed based on the detected events, the previously known risk level of the affected areas and temporal information. Doing so, modularized and flexible perceptions of critical events are provided, according to the particularities of each considered smart city scenario. Besides implementing the proposed system in open-source electronic platforms, we also created a real-time visualization application to dynamically display emergency alarms on a map, demonstrating a feasible and useful application of the system as a supporting service. Therefore, this innovative approach and its corresponding physical implementation can bring valuable results for smart cities, potentially supporting the development of adaptive IoT-based emergency-aware applications.

2020

Modelling Coverage Failures Caused by Mobile Obstacles for the Selection of Faultless Visual Nodes in Wireless Sensor Networks

Authors
Jesus, TC; Costa, DG; Portugal, P; Vasques, F; Aguiar, A;

Publication
IEEE Access

Abstract
Wireless sensor networks comprising nodes equipped with cameras have become common in many scenarios, providing valuable visual data for some relevant services such as localization, tracking, patterns identification and emergencies detection. In this context, algorithms and optimization approaches have been designed to perform different types of quality assessment or performance enhancement tasks, addressing challenging issues such as networking, compression, availability, reliability, security, energy efficiency and virtually any subject related to the operational challenges of those networks. However, the dynamics of coverage failures have not been properly modelled in visual sensor networks, resulting in unrealistic perceptions when optimizing or assessing quality in most visual sensing scenarios. Particularly, the Field of View of visual sensors will be affected by occlusion caused by obstacles in the monitored field, which may turn such sensors inadequate for the expected monitoring services of the considered network. Therefore, this article proposes a mathematical model to assess occlusion caused by mobile obstacles such as vehicles on a road or forklifts in an industrial plant, aiming at the selection of the visual sensor nodes that will not have their coverage significantly restricted by those obstacles. Doing so, the proposed model can be exploited by any optimization or quality assessment approach in wireless visual sensor networks, providing a preprocessing method when selecting visual nodes. © 2013 IEEE.

2020

FoV-Based Quality Assessment and Optimization for Area Coverage in Wireless Visual Sensor Networks

Authors
Jesus, TC; Costa, DG; Portugal, P; Vasques, F;

Publication
IEEE Access

Abstract

2020

On the Use of Cameras for the Detection of Critical Events in Sensors-Based Emergency Alerting Systems

Authors
Costa, DG; Vasques, F; Portugal, P; Aguiar, A;

Publication
Journal of Sensor and Actuator Networks

Abstract
The adoption of emergency alerting systems can bring countless benefits when managing urban areas, industrial plants, farms, roads and virtually any area that is subject to the occurrence of critical events, supporting in rescue operations and reducing their negative impacts. For such systems, a promising approach is to exploit scalar sensors to detect events of interest, allowing for the distributed monitoring of different variables. However, the use of cameras as visual sensors can enhance the detection of critical events, which can be employed along with scalar sensors for a more comprehensive perception of the environment. Although the particularities of visual sensing may be challenging in some scenarios, the combination of scalar and visual sensors for the early detection of emergency situations can be valuable for many scenarios, such as smart cities and industry 4.0, bringing promising results. Therefore, in this article, we extend a sensors-based emergency detection and alerting system to also exploit visual monitoring when identifying critical events. Implementation and experimental details are provided to reinforce the use of cameras as a relevant sensor unit, bringing promising results for emergencies management.

Supervised
thesis

2021

Desenvolvimento de um sistema IoT com comunicação via App/Cloud para monitorização de uma cama médica

Author
José Miguel Rocha Valente Oliveira

Institution
UP-FEUP

2021

Real-time fault detection in photovoltaic power plants

Author
João Paulo Baptista de Oliveira

Institution
UP-FEUP

2021

Dependability Evaluation of Wireless Visual Sensor Networks

Author
Thiago Cerqueira de Jesus

Institution
UP-FEUP

2021

Desenvolvimento de um sistema IoT (“internet of things”) com comunicação via App/Cloud para monitorização de uma cama medica

Author
José Miguel Rocha Valente Oliveira

Institution
UP-FEUP

2021

Real-Time Ethernet Networks: a practical approach to cycle time influence in control applications

Author
Simão Paulo Marques de Amorim

Institution
UP-FEUP