Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

My educational background includes Ph.D, M.Sc. and B.Sc., degrees in Computer Science from the Faculty of Sciences of the University of Porto. I'm currently a Post-Doctoral researcher working in INESCTEC-CRACS and funded by the FCT - Fundação para a Ciência e Tecnologia. My research interests lie on parallel and concurrent programming, and tabling mechanisms applied to Logic Programming.

Interest
Topics
Details

Details

  • Name

    Miguel Gonçalves Areias
  • Cluster

    Computer Science
  • Role

    Researcher
  • Since

    16th May 2011
Publications

2017

On scaling dynamic programming problems with a multithreaded tabling, Prolog system

Authors
Areias, M; Rocha, R;

Publication
JOURNAL OF SYSTEMS AND SOFTWARE

Abstract
Tabling is a powerful implementation technique that improves the declarativeness and expressiveness of traditional Prolog systems in dealing with recursion and redundant computations. It can be viewed as a natural tool to implement dynamic programming problems, where a general recursive strategy divides a problem in simple sub-problems that are often the same. When tabling is combined with multithreading, we have the best of both worlds, since we can exploit the combination of higher declarative semantics with higher procedural control. However, at the engine level, such combination for dynamic programming problems is very difficult to exploit in order to achieve execution scalability as we increase the number of running threads. In this work, we focus on two well-known dynamic programming problems, the Knapsack and the Longest Common Subsequence problems, and we discuss how we were able to scale their execution by using the multithreaded tabling engine of the Yap Prolog system. To the best of our knowledge, this is the first work showing a Prolog system to be able to scale the execution of multithreaded dynamic programming problems. Our experiments also show that our system can achieve comparable or even better speedup results than other parallel implementations of the same problems.

2017

On the implementation of a cloud-based computing test bench environment for prolog systems

Authors
Gonçalves, R; Areias, M; Rocha, R;

Publication
Information (Switzerland)

Abstract
Software testing and benchmarking are key components of the software development process. Nowadays, a good practice in large software projects is the continuous integration (CI) software development technique. The key idea of CI is to let developers integrate their work as they produce it, instead of performing the integration at the end of each software module. In this paper, we extend a previous work on a benchmark suite for the YAP Prolog system, and we propose a fully automated test bench environment for Prolog systems, named Yet Another Prolog Test Bench Environment (YAPTBE), aimed to assist developers in the development and CI of Prolog systems. YAPTBE is based on a cloud computing architecture and relies on the Jenkins framework as well as a new Jenkins plugin to manage the underlying infrastructure. We present the key design and implementation aspects of YAPTBE and show its most important features, such as its graphical user interface (GUI) and the automated process that builds and runs Prolog systems and benchmarks. © 2017 by the authors.

2017

Towards a Lock-Free, Fixed Size and Persistent Hash Map Design

Authors
Areias, MJG; Rocha, RJGLd;

Publication
2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)

Abstract

2017

Towards an Automated Test Bench Environment for Prolog Systems

Authors
Gonçalves, R; Areias, M; Rocha, R;

Publication
6th Symposium on Languages, Applications and Technologies, SLATE 2017, June 26-27, 2017, Vila do Conde, Portugal

Abstract
Software testing and benchmarking is a key component of the software development process. Nowadays, a good practice in big software projects is the Continuous Integration (CI) software development technique. The key idea of CI is to let developers integrate their work as they produce it, instead of doing the integration at the end of each software module. In this paper, we extend a previous work on a benchmark suite for the Yap Prolog system and we propose a fully automated test bench environment for Prolog systems, named Yet Another Prolog Test Bench Environment (YAPTBE), aimed to assist developers in the development and CI of Prolog systems. YAPTBE is based on a cloud computing architecture and relies on the Jenkins framework and in a set of new Jenkins plugins to manage the underneath infrastructure. We present the key design and implementation aspects of YAPTBE and show its most important features, such as its graphical user interface and the automated process that builds and runs Prolog systems and benchmarks. © Ricardo Gonçalves, Miguel Areias, and Ricardo Rocha

2016

A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs

Authors
Areias, M; Rocha, R;

Publication
International Journal of Parallel Programming

Abstract
Tabling is an implementation technique that improves the declarativeness and expressiveness of Prolog systems in dealing with recursion and redundant sub-computations. A critical component in the design of a concurrent tabling system is the implementation of the table space. One of the most successful proposals for representing tables is based on a two-level trie data structure, where one trie level stores the tabled subgoal calls and the other stores the computed answers. In previous work, we have presented a sophisticated lock-free design where both levels of the tries where shared among threads in a concurrent environment. To implement lock-freedom we used the CAS atomic instruction that nowadays is widely found on many common architectures. CAS reduces the granularity of the synchronization when threads access concurrent areas, but still suffers from problems such as false sharing or cache memory effects. In this work, we present a simpler and efficient lock-free design based on hash tries that minimizes these problems by dispersing the concurrent areas as much as possible. Experimental results in the Yap Prolog system show that our new lock-free design can effectively reduce the execution time and scales better than previous designs. © 2015, Springer Science+Business Media New York.