Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

Publications

2019

Identifying, Ranking and Tracking Community Leaders in Evolving Social Networks

Authors
Cordeiro, M; Sarmento, RP; Brazdil, P; Kimura, M; Gama, J;

Publication
Complex Networks and Their Applications VIII - Volume 1 Proceedings of the Eighth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2019, Lisbon, Portugal, December 10-12, 2019.

Abstract
Discovering communities in a network is a fundamental and important problem to complex networks. Find the most influential actors among its peers is a major task. If on one side, studies on community detection ignore the influence of actors and communities, on the other hand, ignoring the hierarchy and community structure of the network neglect the actor or community influence. We bridge this gap by combining a dynamic community detection method with a dynamic centrality measure. The proposed enhanced dynamic hierarchical community detection method computes centrality for nodes and aggregated communities and selects each community representative leader using the ranked centrality of every node belonging to the community. This method is then able to unveil, track, and measure the importance of main actors, network intra and inter-community structural hierarchies based on a centrality measure. The empirical analysis performed, using two temporal networks shown that the method is able to find and tracking community leaders in evolving networks. © 2020, Springer Nature Switzerland AG.

2018

Incremental TextRank - Automatic Keyword Extraction for Text Streams

Authors
Sarmento, RP; Cordeiro, M; Brazdil, P; Gama, J;

Publication
Proceedings of the 20th International Conference on Enterprise Information Systems, ICEIS 2018, Funchal, Madeira, Portugal, March 21-24, 2018, Volume 1.

Abstract
Text Mining and NLP techniques are a hot topic nowadays. Researchers thrive to develop new and faster algorithms to cope with larger amounts of data. Particularly, text data analysis has been increasing in interest due to the growth of social networks media. Given this, the development of new algorithms and/or the upgrade of existing ones is now a crucial task to deal with text mining problems under this new scenario. In this paper, we present an update to TextRank, a well-known implementation used to do automatic keyword extraction from text, adapted to deal with streams of text. In addition, we present results for this implementation and compare them with the batch version. Major improvements are lowest computation times for the processing of the same text data, in a streaming environment, both in sliding window and incremental setups. The speedups obtained in the experimental results are significant. Therefore the approach was considered valid and useful to the research community. Copyright

2018

Evolving Networks and Social Network Analysis Methods and Techniques

Authors
Cordeiro, M; Sarmento, RP; Brazdil, P; Gama, J;

Publication
Social Media and Journalism - Trends, Connections, Implications

Abstract

2017

Efficient Incremental Laplace Centrality Algorithm for Dynamic Networks

Authors
Sarmento, RP; Cordeiro, M; Brazdil, P; Gama, J;

Publication
Complex Networks & Their Applications VI - Proceedings of Complex Networks 2017 (The Sixth International Conference on Complex Networks and Their Applications), COMPLEX NETWORKS 2017, Lyon, France, November 29 - December 1, 2017.

Abstract
Social Network Analysis (SNA) is an important research area. It originated in sociology but has spread to other areas of research, including anthropology, biology, information science, organizational studies, political science, and computer science. This has stimulated research on how to support SNA with the development of new algorithms. One of the critical areas involves calculation of different centrality measures. The challenge is how to do this fast, as many increasingly larger datasets are available. Our contribution is an incremental version of the Laplacian Centrality measure that can be applied not only to large graphs but also to dynamically changing networks. We have conducted several tests with different types of evolving networks. We show that our incremental version can process a given large network, faster than the corresponding batch version in both incremental and full dynamic network setups. © Springer International Publishing AG 2018.

2016

Dynamic community detection in evolving networks using locality modularity optimization

Authors
Cordeiro, M; Sarmento, RP; Gama, J;

Publication
SOCIAL NETWORK ANALYSIS AND MINING

Abstract
The amount and the variety of data generated by today's online social and telecommunication network services are changing the way researchers analyze social networks. Facing fast evolving networks with millions of nodes and edges are, among other factors, its main challenge. Community detection algorithms in these conditions have also to be updated or improved. Previous state-of-the-art algorithms based on the modularity optimization (i.e. Louvain algorithm), provide fast, efficient and robust community detection on large static networks. Nonetheless, due to the high computing complexity of these algorithms, the use of batch techniques in dynamic networks requires to perform network community detection for the whole network in each one of the evolution steps. This fact reveals to be computationally expensive and unstable in terms of tracking of communities. Our contribution is a novel technique that maintains the community structure always up-to-date following the addition or removal of nodes and edges. The proposed algorithm performs a local modularity optimization that maximizes the modularity gain function only for those communities where the editing of nodes and edges was performed, keeping the rest of the network unchanged. The effectiveness of our algorithm is demonstrated with the comparison to other state-of-the-art community detection algorithms with respect to Newman's Modularity, Modularity with Split Penalty, Modularity Density, number of detected communities and running time.