Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Luis Paulo Reis is an Associate Professor at the University of Minho in Portugal and Director of LIACC â?? Artificial Intelligence and Computer Science Laboratory where he also coordinates the Human-Machine Intelligent Cooperation Research Group. He is a IEEE Senior Member and vice-president of both the Portuguese Society for Robotics and the Portuguese Association for Artificial Intelligence. During the last 25 years he has lectured courses, at the University, on Artificial Intelligence, Intelligent Robotics, Multi-Agent Systems, Simulation and Modelling, Educational/Serious Games and Computer Programming. He was principal investigator of more than 10 research projects in those areas. He won more than 50 scientific awards including wining more than 15 RoboCup international competitions and best papers at conferences such as ICEIS, Robotica, IEEE ICARSC and ICAART. He supervised 17 PhD and 95 MSc theses to completion. He organized more than 50 scientific events and belonged to the Program Committee of more than 250 scientific events. He is the author of more than 250 publications in international conferences and journals (indexed at SCOPUS or ISI Web of Knowledge).

Interest
Topics
Details

Details

Publications

2023

Intelligent Wheelchairs Rolling in Pairs Using Reinforcement Learning

Authors
Rodrigues, N; Sousa, A; Reis, LP; Coelho, A;

Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2

Abstract
Intelligent wheelchairs aim to improve mobility limitations by providing ingenious mechanisms to control and move the chair. This paper aims to enhance the autonomy level of intelligent wheelchair navigation by applying reinforcement learning algorithms to move the chair to the desired location. Also, as a second objective, add one more chair and move both chairs in pairs to promote group social activities. The experimental setup is based on a simulated environment using gazebo and ROS where a leader chair moves towards a goal, and the follower chair should navigate near the leader chair. The collected metrics (time to complete the task and the trajectories of the chairs) demonstrated that Deep Q-Network (DQN) achieved better results than the Q-Learning algorithm by being the unique algorithm to accomplish the pair navigation behaviour between two chairs.

2023

Stereo Based 3D Perception for Obstacle Avoidance in Autonomous Wheelchair Navigation

Authors
Gomes, B; Torres, J; Sobral, P; Sousa, A; Reis, LP;

Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
In recent years, scientific and technological advances in robotics, have enabled the development of disruptive solutions for human interaction with the real world. In particular, the application of robotics to support people with physical disabilities, improved their life quality with a high social impact. This paper presents a stereo image based perception solution for autonomous wheelchairs navigation. It was developed to extend the Intellwheels project, a development platform for intelligent wheelchairs. The current version of Intellwheels relies on a planar scanning sensor, the Laser Range Finder (LRF), to detect the surrounding obstacles. The need for robust navigation capabilities means that the robot is required to precept not only obstacles but also bumps and holes on the ground. The proposed stereo-based solution, supported in passive stereo ZED cameras, was evaluated in a 3D simulated world scenario designed with a challenging floor. The performance of the wheelchair navigation with three different configurations was compared: first, using a LRF sensor, next with an unfiltered stereo camera and finally, applying a stereo camera with a speckle filter. The LRF solution was unable to complete the planned navigation. The unfiltered stereo camera completed the challenge with a low navigation quality due to noise. The filtered stereo camera reached the target position with a nearly optimal path.

2023

Hand Gestures Recognition for an Intelligent Wheelchair Steering Command

Authors
Almeida, P; Faria, BM; Reis, LP;

Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2

Abstract
The independence and autonomy of both elderly and disabled people have been a growing concern of today's society. Consequently, the increase in life expectancy combined with the ageing of the population has created the ideal conditions for the introduction of Intelligent Wheelchairs (IWs). For this purpose, several adapted sensors should be used to optimize the control of a wheelchair. During this work, the Leap Motion sensor was analyzed to convert the user's will into one of four fundamental driving commands, move forward, turn right, left, or stop. Leap Motion aims to determine the direction to follow according to the hand gesture identified. For this task, data was collected from volunteers while they were performing certain gestures. Thereby it was possible to produce a data set that after being processed and extracted some features enabled the classification of the data with an F1-Score higher than 0.97. Additionally, when tested in a real-time application, this sensor reinforced its high performance.

2023

Learning hybrid locomotion skills-Learn to exploit residual actions and modulate model-based gait control

Authors
Kasaei, M; Abreu, M; Lau, N; Pereira, A; Reis, LP; Li, ZB;

Publication
FRONTIERS IN ROBOTICS AND AI

Abstract
This work has developed a hybrid framework that combines machine learning and control approaches for legged robots to achieve new capabilities of balancing against external perturbations. The framework embeds a kernel which is a model-based, full parametric closed-loop and analytical controller as the gait pattern generator. On top of that, a neural network with symmetric partial data augmentation learns to automatically adjust the parameters for the gait kernel, and also generate compensatory actions for all joints, thus significantly augmenting the stability under unexpected perturbations. Seven Neural Network policies with different configurations were optimized to validate the effectiveness and the combined use of the modulation of the kernel parameters and the compensation for the arms and legs using residual actions. The results validated that modulating kernel parameters alongside the residual actions have improved the stability significantly. Furthermore, The performance of the proposed framework was evaluated across a set of challenging simulated scenarios, and demonstrated considerable improvements compared to the baseline in recovering from large external forces (up to 118%). Besides, regarding measurement noise and model inaccuracies, the robustness of the proposed framework has been assessed through simulations, which demonstrated the robustness in the presence of these uncertainties. Furthermore, the trained policies were validated across a set of unseen scenarios and showed the generalization to dynamic walking.

2023

Investigating the reviewer assignment problem: A systematic literature review

Authors
Ribeiro, AC; Sizo, A; Reis, LP;

Publication
JOURNAL OF INFORMATION SCIENCE

Abstract
The assignment of appropriate reviewers to academic articles, known as the reviewer assignment problem (RAP), has become a crucial issue in academia. While there has been much research on RAP, there has not yet been a systematic literature review (SLR) examining the various approaches, techniques, algorithms and discoveries related to this topic. To conduct the SLR, we identified and evaluated relevant articles from four databases using defined inclusion and exclusion criteria. We analysed the selected articles and extracted information, and assessed their quality. Our review identified 67 articles on RAP published in conferences and journals up to mid-2022. As one of the main challenges in RAP is acquiring open data, we have studied the data sources used by researchers and found that most studies use real data from conferences, bibliographic databases and online academic search engines. RAP is divided into two main phases: (1) finding/recommending expert reviewers and (2) assigning reviewers to submitted manuscripts. In Phase 1, we have identified that decision support systems, recommendation systems, and machine learning-oriented approaches are more commonly used due to better results. In Phase 2, heuristics and metaheuristics are the approaches that present better results and are consequently more commonly used by researchers. Based on the analysed studies, we have identified potential areas for future research that could lead to improved results. Specifically, we suggest exploring the application of deep neural networks for calculating the degree of correspondence and using the Boolean satisfiability problem to optimise the attribution process.