Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

Publications

2021

QVigourMap: A GIS Open Source Application for the Creation of Canopy Vigour Maps

Authors
Duarte, L; Teodoro, AC; Sousa, JJ; Padua, L;

Publication
Agronomy

Abstract
In a precision agriculture context, the amount of geospatial data available can be difficult to interpret in order to understand the crop variability within a given terrain parcel, raising the need for specific tools for data processing and analysis. This is the case for data acquired from Unmanned Aerial Vehicles (UAV), in which the high spatial resolution along with data from several spectral wavelengths makes data interpretation a complex process regarding vegetation monitoring. Vegetation Indices (VIs) are usually computed, helping in the vegetation monitoring process. However, a crop plot is generally composed of several non-crop elements, which can bias the data analysis and interpretation. By discarding non-crop data, it is possible to compute the vigour distribution for a specific crop within the area under analysis. This article presents QVigourMaps, a new open source application developed to generate useful outputs for precision agriculture purposes. The application was developed in the form of a QGIS plugin, allowing the creation of vigour maps, vegetation distribution maps and prescription maps based on the combination of different VIs and height information. Multi-temporal data from a vineyard plot and a maize field were used as case studies in order to demonstrate the potential and effectiveness of the QVigourMaps tool. The presented application can contribute to making the right management decisions by providing indicators of crop variability, and the outcomes can be used in the field to apply site-specific treatments according to the levels of vigour.

2021

Virtual Environments & Precision Viticulture: A Case Study

Authors
Lourenço, J; Teixeira, J; Carvalho, P; Pádua, L; Adão, T; Peres, E; Sousa, JJ;

Publication
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS

Abstract

2021

Grapevine Variety Identification Through Grapevine Leaf Images Acquired in Natural Environment

Authors
Carneiro, GS; Pádua, L; Sousa, JJ; Peres, E; Morais, R; Cunha, A;

Publication
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS

Abstract

2021

An Efficient Method for Generating UAV-Based Hyperspectral Mosaics Using Push-Broom Sensors

Authors
Jurado, JM; Padua, L; Hruska, J; Feito, FR; Sousa, JJS;

Publication
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Abstract
Hyperspectral sensors mounted in unmanned aerial vehicles offer new opportunities to explore high-resolution multitemporal spectral analysis in remote sensing applications. Nevertheless, the use of hyperspectral data still poses challenges mainly in postprocessing to correct from high geometric deformation of images. In general, the acquisition of high-quality hyperspectral imagery is achieved through a time-consuming and complex processing workflow. However, this effort is mandatory when using hyperspectral imagery in a multisensor data fusion perspective, such as with thermal infrared imagery or photogrammetric point clouds. Push-broom hyperspectral sensors provide high spectral resolution data, but its scanning acquisition architecture imposes more challenges to create geometrically accurate mosaics from multiple hyperspectral swaths. In this article, an efficient method is presented to correct geometrical distortions on hyperspectral swaths from push-broom sensors by aligning them with an RGB photogrammetric orthophoto mosaic. The proposed method is based on an iterative approach to align hyperspectral swaths with an RGB photogrammetric orthophoto mosaic. Using as input preprocessed hyperspectral swaths, apart from the need of introducing some control points, the workflow is fully automatic and consists of: adaptive swath subdivision into multiple fragments; detection of significant image features; estimation of valid matches between individual swaths and the RGB orthophoto mosaic; and calculation of the best geometric transformation model to the retrieved matches. As a result, geometrical distortions of hyperspectral swaths are corrected and an orthomosaic is generated. This methodology provides an expedite solution able to produce a hyperspectral mosaic with an accuracy ranging from two to five times the ground sampling distance of the high-resolution RGB orthophoto mosaic, enabling the hyperspectral data integration with data from other sensors for multiple applications.

2020

Digital Reconstitution of Road Traffic Accidents: A Flexible Methodology Relying on UAV Surveying and Complementary Strategies to Support Multiple Scenarios

Authors
Padua, L; Sousa, J; Vanko, J; Hruska, J; Adao, T; Peres, E; Sousa, A; Sousa, JJ;

Publication
International Journal of Environmental Research and Public Health

Abstract
The reconstitution of road traffic accidents scenes is a contemporary and important issue, addressed both by private and public entities in different countries around the world. However, the task of collecting data on site is not generally focused on with the same orientation and relevance. Addressing this type of accident scenario requires a balance between two fundamental yet competing concerns: (1) information collecting, which is a thorough and lengthy process and (2) the need to allow traffic to flow again as quickly as possible. This technical note proposes a novel methodology that aims to support road traffic authorities/professionals in activities involving the collection of data/evidences of motor vehicle collision scenarios by exploring the potential of using low-cost, small-sized and light-weight unmanned aerial vehicles (UAV). A high number of experimental tests and evaluations were conducted in various working conditions and in cooperation with the Portuguese law enforcement authorities responsible for investigating road traffic accidents. The tests allowed for concluding that the proposed method gathers all the conditions to be adopted as a near future approach for reconstituting road traffic accidents and proved to be: faster, more rigorous and safer than the current manual methodologies used not only in Portugal but also in many countries worldwide.