Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

Publications

2019

Using causal inference to measure residential consumers demand response elasticity

Authors
Ganesan, K; Saraiva, JT; Bessa, RJ;

Publication
2019 IEEE Milan PowerTech, PowerTech 2019

Abstract
Engaging the residential consumers and providing the best tariffs for their randomized behavior is one of the major barriers to demand response (DR) implementation. Additionally, DR offers submitted by aggregators or retailers are not consumer-specific, which turns it even more difficult for the engagement of consumers in these programs. In order to address this issue, this paper describes a methodology based on causal inference between dynamic DR tariffs and observed residential electricity consumption (resolution of 30 minutes) to estimate consumers' consumption elasticity. Ultimately, the aim of this approach is to aid aggregators and retailers to better tune DR offers to consumer needs and so to enlarge the response rate to their DR programs. © 2019 IEEE.