Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

José Gouveia completed in 2015 the Integrated Master Degree in Electrical and Computer Engineering at FEUP, specializing in energy systems.

From the work developed during its master thesis he has won a honorable mention in the PREMIO REN 2016.

Since joining INESC TEC in May 2015, he has been involved in scientific projects and consulting in the area of integration of renewable sources in the electrical system as well as in the dynamic analysis of electrical systems.



Interest
Topics
Details

Details

  • Name

    José Miguel Gouveia
  • Cluster

    Power and Energy
  • Role

    External Student
  • Since

    01st May 2015
007
Publications

2021

Influence of Load Dynamics on Converter-Dominated Isolated Power Systems

Authors
Gouveia, J; Moreira, CL; Lopes, JAP;

Publication
Applied Sciences

Abstract
The operation of isolated power systems with 100% converter-based generation requires the integration of battery energy storage systems (BESS) using grid-forming-type power converters. Under these operating conditions, load dynamics influences the network frequency and voltage following large voltage disturbances. In this sense, the inclusion of induction motor (IM) load models is required to be properly considered in BESS power converter sizing. Thus, this paper presents an extensive sensitivity analysis, demonstrating how load modeling affects the BESS power converter capacity when adopting conventional control strategies while aiming to assure the successful recovery of all IM loads following a network fault. Furthermore, this work highlights that generators with converter interfaces can actively contribute to mitigate the negative impacts resulting from IM loads following a network fault. Thereby, two distinct control strategies are proposed to be integrated in the power electronic interfaces of the available converter-based generators: one to be adopted in grid-following converters and another one suitable for grid-forming converters. The proposed control strategies provide an important contribution to consolidating insular grid codes, aiming to achieve operational scenarios accommodating 100% penetration of converter-based generation with a significative percentage of the IM load composition without resorting to a significative increase in BESS power converter sizing.

2020

Planning of distribution networks islanded operation: from simulation to live demonstration

Authors
Gouveia, J; Gouveia, C; Rodrigues, J; Carvalho, L; Moreira, CL; Lopes, JAP;

Publication
Electric Power Systems Research

Abstract
The integration of distributed Battery Energy Storage Systems (BESS) at the Medium Voltage (MV) and Low Voltage (LV) networks increases the distribution grid flexibility to deal with high penetration of Renewable Energy Sources (RES). In addition, it also enables the deployment of key self-healing functionalities, which allow the islanded operation of small sections of the distribution network. However, new planning and real-time operation strategies are required to allow the BESS coordinated control, as well as a cost-effective and stable operation. This paper presents new tools developed for the planning and real-time operation of distribution networks integrating BESS, particularly when operating islanding. For real-time operation, a short-term emergency operation-planning tool assesses the feasibility of islanded operation of a small section of the distribution network. The long-term impact of a BESS control strategy for islanded operation is assessed through a Life Cycle Analysis (LCA) tool. The results and implementation experience in real distribution network are also discussed. © 2020

2019

Black start and islanding operations of microgrid

Authors
Gouveia, C; Moreira, C; Madureira, AG; Gouveia, J; Issicaba, D; Pecas Lopes, JA;

Publication
Variability, Scalability and Stability of Microgrids

Abstract

2019

Grid-Forming Inverters Sizing in Islanded Power Systems- A stability perspective

Authors
Gouveia, J; Moreira, CL; Lopes, JAP;

Publication
SEST 2019 - 2nd International Conference on Smart Energy Systems and Technologies

Abstract
The large scale integration of inverter-based renewable generation in isolated power systems is posing stability concerns as a result of the displacement of the conventional synchronous machines (SM). In this sense, the integration of battery energy storage systems (BESS) connected to the grid through power converters operating as grid-forming units is mandatory in order to ensure system stability. Therefore, this paper aims to perform a dynamic stability analysis of an isolated power system regarding the installation of a BESS, where it is intended to determine the minimum required grid-forming power capacity of the associated power converter that guarantees system stability under several operational scenarios. Moreover, the expected interactions between the grid-forming inverter and the conventional SM are also addressed. © 2019 IEEE.

2017

MicroGrid Energy Balance Management for Emergency Operation

Authors
Gouveia, J; Gouveia, C; Rodrigues, J; Bessa, R; Madureira, AG; Pinto, R; Moreira, CL; Lopes, JAP;

Publication
2017 IEEE MANCHESTER POWERTECH

Abstract
A distinctive characteristic of a Microgrid (MG) system is related to the ability of operating autonomously. However, the stability of the system relies in storage and generation availability, providing frequency and voltage regulation. Considering the deployment of distributed storage units in the Low Voltage network and of smart metering infrastructures, this paper presents an online tool for promoting an effective coordination of MG flexible resources in order ensure a secure autonomous operation and maximize the time that the MG is able to operate islanded from the main grid. The tool determines a priori an emergency operation plan for the next hours, based on load and microgeneration forecasting. The limited energy capacity of the distributed storage units participating in MG control is also considered.