Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I'm Guilherme Aresta and I'm a PhD student/researcher at INESC TEC and Faculdade de Engenharia da Universidade do Porto (FEUP).

I've obtained my master degree in Bioengineering, field of Biomedical Engineering, at FEUP. 

My fields of interest are medical image analysis, computer vision and machine learning. My current research topic is the detection of lung nodules in computed tomography images.

Interest
Topics
Details

Details

002
Publications

2020

Automatic lung nodule detection combined with gaze information improves radiologists' screening performance

Authors
Aresta, G; Ramos, I; Campilho, A; Ferreira, C; Pedrosa, J; Araujo, T; Rebelo, J; Negrao, E; Morgado, M; Alves, F; Cunha, A;

Publication
IEEE Journal of Biomedical and Health Informatics

Abstract

2020

DR|GRADUATE: uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images

Authors
Araújo, T; Aresta, G; Mendonça, L; Penas, S; Maia, C; Carneiro, A; Mendonça, AM; Campilho, A;

Publication
Medical Image Analysis

Abstract

2020

DR vertical bar GRADUATE: Uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images

Authors
Araujo, T; Aresta, G; Mendonca, L; Penas, S; Maia, C; Carneiro, A; Maria Mendonca, AM; Campilho, A;

Publication
MEDICAL IMAGE ANALYSIS

Abstract
Diabetic retinopathy (DR) grading is crucial in determining the adequate treatment and follow up of patient, but the screening process can be tiresome and prone to errors. Deep learning approaches have shown promising performance as computer-aided diagnosis (CAD) systems, but their black-box behaviour hinders clinical application. We propose DR vertical bar GRADUATE, a novel deep learning-based DR grading CAD system that supports its decision by providing a medically interpretable explanation and an estimation of how uncertain that prediction is, allowing the ophthalmologist to measure how much that decision should be trusted. We designed DR vertical bar GRADUATE taking into account the ordinal nature of the DR grading problem. A novel Gaussian-sampling approach built upon a Multiple Instance Learning framework allow DR vertical bar GRADUATE to infer an image grade associated with an explanation map and a prediction uncertainty while being trained only with image-wise labels. DR vertical bar GRADUATE was trained on the Kaggle DR detection training set and evaluated across multiple datasets. In DR grading, a quadratic-weighted Cohen's kappa (kappa) between 0.71 and 0.84 was achieved in five different datasets. We show that high kappa values occur for images with low prediction uncertainty, thus indicating that this uncertainty is a valid measure of the predictions' quality. Further, bad quality images are generally associated with higher uncertainties, showing that images not suitable for diagnosis indeed lead to less trustworthy predictions. Additionally, tests on unfamiliar medical image data types suggest that DR vertical bar GRADUATE allows outlier detection. The attention maps generally highlight regions of interest for diagnosis. These results show the great potential of DR vertical bar GRADUATE as a second-opinion system in DR severity grading.

2020

Classification of Lung Nodules in CT Volumes Using the Lung-RADS™ Guidelines with Uncertainty Parameterization

Authors
Ferreira, CA; Aresta, G; Pedrosa, J; Rebelo, J; Negrão, E; Cunha, A; Ramos, I; Campilho, A;

Publication
17th IEEE International Symposium on Biomedical Imaging, ISBI 2020, Iowa City, IA, USA, April 3-7, 2020

Abstract
Currently, lung cancer is the most lethal in the world. In order to make screening and follow-up a little more systematic, guidelines have been proposed. Therefore, this study aimed to create a diagnostic support approach by providing a patient label based on the LUNG-RADS™ guidelines. The only input required by the system is the nodule centroid to take the region of interest for the input of the classification system. With this in mind, two deep learning networks were evaluated: a Wide Residual Network and a DenseNet. Taking into account the annotation uncertainty we proposed to use sample weights that are introduced in the loss function, allowing nodules with a high agreement in the annotation process to take a greater impact on the training error than its counterpart. The best result was achieved with the Wide Residual Network with sample weights achieving a nodule-wise LUNG-RADS™ labelling accuracy of 0.735\pm 0.003. © 2020 IEEE.

2019

An unsupervised metaheuristic search approach for segmentation and volume measurement of pulmonary nodules in lung CT scans

Authors
Shakibapour, E; Cunha, A; Aresta, G; Mendonca, AM; Campilho, A;

Publication
Expert Systems with Applications

Abstract
This paper proposes a new methodology to automatically segment and measure the volume of pulmonary nodules in lung computed tomography (CT) scans. Estimating the malignancy likelihood of a pulmonary nodule based on lesion characteristics motivated the development of an unsupervised pulmonary nodule segmentation and volume measurement as a preliminary stage for pulmonary nodule characterization. The idea is to optimally cluster a set of feature vectors composed by intensity and shape-related features in a given feature data space extracted from a pre-detected nodule. For that purpose, a metaheuristic search based on evolutionary computation is used for clustering the corresponding feature vectors. The proposed method is simple, unsupervised and is able to segment different types of nodules in terms of location and texture without the need for any manual annotation. We validate the proposed segmentation and volume measurement on the Lung Image Database Consortium and Image Database Resource Initiative – LIDC-IDRI dataset. The first dataset is a group of 705 solid and sub-solid (assessed as part-solid and non-solid) nodules located in different regions of the lungs, and the second, more challenging, is a group of 59 sub-solid nodules. The average Dice scores of 82.35% and 71.05% for the two datasets show the good performance of the segmentation proposal. Comparisons with previous state-of-the-art techniques also show acceptable and comparable segmentation results. The volumes of the segmented nodules are measured via ellipsoid approximation. The correlation and statistical significance between the measured volumes of the segmented nodules and the ground-truth are obtained by Pearson correlation coefficient value, obtaining an R-value = 92.16% with a significance level of 5%. © 2018 Elsevier Ltd