Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
Interest
Topics
Details

Details

  • Name

    Francisco Vasques
  • Cluster

    Power and Energy
  • Role

    External Research Collaborator
  • Since

    01st January 2015
Publications

2019

Real-time analysis of time-critical messages in IEC 61850 electrical substation communication systems

Authors
Leon, H; Montez, C; Valle, O; Vasques, F;

Publication
Energies

Abstract
IEC 61850 is a standard for the design and operation of electrical Substation Automation Systems (SAS) that defines how data may be transferred among Intelligent Electronic Devices (IEDs). The defined data models can be mapped into application protocols, such as SV or GOOSE, which may run upon high speed Ethernet LANs bridged by IEEE 802.1Q compliant switches. The communication system must cope with the timing requirements associated to protective relaying strategies. Given the time constrained nature of SAS applications, a thorough analysis of its timing behavior is required. In this paper, we propose an analytical model for the timing assessment of SV and GOOSE message exchanges in an IEC 61850 process bus. The proposed model allows the communication timing assessment, by analyzing the response time of each message stream of the SAS. This feature is an advantage for the expansion of the SAS, as it allows the evaluation at design time of the maximum number of IEDs that can be supported by the underlying communication system. The results from the proposed analytical model were validated for a typical IEC 61850 communication scenario, both through simulation and through an experimental assessment with IEC 61850 compliant equipment. © 2019 by the Authors.

2019

Handling Real-Time Communication in Infrastructured IEEE 802.11 Wireless Networks: The RT-WiFi Approach

Authors
Costa, R; Lau, J; Portugal, P; Vasques, F; Moraes, R;

Publication
JOURNAL OF COMMUNICATIONS AND NETWORKS

Abstract
In this paper, the RT-WiFi architecture is proposed to handle real-time (RT) communication in infrastructured IEEE 802.11 networks operating in high density industrial environments. This architecture is composed of a time division multiple access (TDMA)-based coordination layer that schedules the medium access of RT traffic flows, and an underlying traffic separation mechanism that is able do handle the coexistence of RT and non-RT traffic sources in the same communication environment. The simulation assessment considers an overlapping basic service set (OBSS), where a set of RT and non-RT stations share the same frequency band. The performance assessment compares the behaviour of the RT-WiFi architecture vs. the behaviour of standard distributed coordination function (DCF), point coordination function (PCF), enhanced distributed channel access (EDCA), and hybrid coordination function (HCF) controlled channel access (HCCA) medium access control mechanisms. A realistic error-prone model has been used to measure the impact of message losses in the RT-WiFi architecture. It is shown that the proposed RT-WiFi architecture offers a significantly enhanced behaviour when compared with the use of IEEE 802.11 standard mechanisms, in what concerns average deadline misses and average access delays. Moreover, it also offers an almost constant access delay, which is a relevant characteristic when supporting RT applications.

2018

Experimental assessment of LNC-based cooperative communication schemes using commercial off-the-shelf wireless sensor network nodes

Authors
Valle, OT; Budke, G; Montez, C; Moraes, R; Vasques, F;

Publication
International Journal of Communication Systems

Abstract

2018

An Advanced Battery Model for WSN Simulation in Environments With Temperature Variations

Authors
Rodrigues, L; Leao, E; Montez, C; Moraes, R; Portugal, P; Vasques, F;

Publication
IEEE SENSORS JOURNAL

Abstract
Wireless sensor networks (WSNs) can be used to support monitoring activities in a wide range of applications and communication environments. Its usage in extreme conditions, in what concerns pressure, temperature, and humidity, must be carefully assessed before the network deployment. In particular, the temperature variations have a direct impact upon the behavior of WSNs through the batteries of sensor nodes. These electrochemical devices are highly susceptible to temperature variations, which modifies the offered effective charge capacity. In this context, it is difficult to estimate the behavior of batteries over time, impairing the extraction of relevant information for energy-aware approaches. Such information, particularly battery state of charge, voltage, and lifetime, is often used by WSN simulators to predict the communication behavior in different scenarios. Nevertheless, WSN simulators generally use simplistic battery models, causing significant deviations in simulation results when compared with actualWSN deployments. This paper describes the implementation of the Temperature-Dependent Kinetic Battery Model (T-KiBaM) in the Castalia simulator, which enables a considerable improvement of the accuracy of simulations in communication environments with different temperature conditions. An experimental assessment has been performed with temperature variations over time to validate the usage of the T-KiBaM battery model. The experimental results indicate that the T-KiBaM model is quite accurate when estimating battery behavior under both different temperature set points and different temperature variations.

2018

Automated methodology for dependability evaluation of wireless visual sensor networks

Authors
Jesus, TC; Portugal, P; Vasques, F; Costa, DG;

Publication
Sensors (Switzerland)

Abstract
Wireless sensor networks have been considered as an effective solution to a wide range of applications due to their prominent characteristics concerning information retrieving and distributed processing. When visual information can be also retrieved by sensor nodes, applications acquire a more comprehensive perception of monitored environments, fostering the creation of wireless visual sensor networks. As such networks are being more often considered for critical monitoring and control applications, usually related to catastrophic situation prevention, security enhancement and crises management, fault tolerance becomes a major expected service for visual sensor networks. A way to address this issue is to evaluate the system dependability through quantitative attributes (e.g., reliability and availability), which require a proper modeling strategy to describe the system behavior. That way, in this paper, we propose a methodology to model and evaluate the dependability of wireless visual sensor networks using Fault Tree Analysis and Markov Chains. The proposed modeling strategy considers hardware, battery, link and coverage failures, besides considering routing protocols on the network communication behavior. The methodology is automated by a framework developed and integrated with the SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator) tool. The achieved results show that this methodology is useful to compare different network implementations and the corresponding dependability, enabling the uncovering of potentially weak points in the network behavior. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.