Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Francisco Vasques
  • Cluster

    Power and Energy
  • Role

    External Research Collaborator
  • Since

    01st January 2015
Publications

2022

A Survey of Emergencies Management Systems in Smart Cities

Authors
Costa, DG; Peixoto, JPJ; Jesus, TC; Portugal, P; Vasques, F; Rangel, E; Peixoto, M;

Publication
IEEE ACCESS

Abstract
The rapid urbanization process in the last century has deeply changed the way we live and interact with each other. As most people now live in urban areas, cities are experiencing growing demands for more efficient and sustainable public services that may improve the perceived quality of life, specially with the anticipated impacts of climatic changes. In this already complex scenario with increasingly overcrowded urban areas, different types of emergency situations may happen anywhere and anytime, with unpredictable costs in human lives and economic losses. In order to cope with unexpected and potentially dangerous emergencies, smart cities initiatives have been developed in different cities, addressing multiple aspects of emergencies detection, alerting, and mitigation. In this context, this article surveys recent smart city solutions for crisis management, proposing definitions for emergencies-oriented systems and classifying them according to the employed technologies and provided services. Additionally, recent developments in the domains of Internet of Things, Artificial Intelligence and Big Data are also highlighted when associated to the management of urban emergencies, potentially paving the way for new developments while classifying and organizing them according to different criteria. Finally, open research challenges will be identified, indicating promising trends and research directions for the coming years.

2022

A Survey on Monitoring Quality Assessment for Wireless Visual Sensor Networks

Authors
Jesus, TC; Costa, DG; Portugal, P; Vasques, F;

Publication
FUTURE INTERNET

Abstract

2021

Combining Network Coding and Retransmission Techniques to Improve the Communication Reliability of Wireless Sensor Network

Authors
Laurindo, S; Moraes, R; Montez, C; Vasques, F;

Publication
INFORMATION

Abstract
This paper addresses the use of network coding algorithms combined with adequate retransmission techniques to improve the communication reliability of Wireless Sensor Networks (WSN). Basically, we assess the recently proposed Optimized Relay Selection Technique (ORST) operating together with four different retransmission techniques, three of them applying network coding algorithms. The target of this assessment is to analyze the impact upon the communication reliability from each of the proposed retransmission techniques for WSN applications. In addition, this paper presents an extensive state-of-the-art study in what concerns the use of network coding techniques in the WSN context. The initial assumption of this research work was that the ORST operating together network coding would improve the communication reliability of WNS. However, the simulation assessment highlighted that, when using the ORST technique, retransmission without network coding is the better solution.

2021

A Mathematical Model to Evaluate Visual Sensing Coverage of Emergency Signs on Moving Vehicles

Authors
Costa, DG; Vasques, F; Portugal, P;

Publication
IEEE International Smart Cities Conference, ISC2 2021, Manchester, United Kingdom, September 7-10, 2021

Abstract
Emergency vehicles have been employed in rescue operations and supportive services, attending victims and managing critical situations in smart cities. Such vehicles, notably ambulances, fire trucks, police cars and transit agents vehicles, may be tracked and monitored in some applications for different functions. When such emergency vehicles are not equipped with GPS receivers, cameras can be used to view emergency signs printed on them, allowing indirect identification of emergency vehicles, although many complexities have to be considered when performing visual sensors-based tracking and monitoring. In this context, this paper proposes a mathematical model focused on the evaluation of the coverage efficiency of a group of visual sensors over moving vehicles, aimed at visual coverage of emergency signs. For that, vehicles, emergency signs and visual sensors are mathematically modelled in this paper, with coverage interactions among these elements being computed based on proposed geometry equations and algorithms. Doing so, the effectiveness of the positioning and configurations of visual sensors can be evaluated without requiring actual deployment, potentially reducing costs when assessing visual monitoring systems in this scenario. © 2021 IEEE.

2020

A Distributed Multi-Tier Emergency Alerting System Exploiting Sensors-Based Event Detection to Support Smart City Applications

Authors
Costa, DG; Vasques, F; Portugal, P; Aguiar, A;

Publication
SENSORS

Abstract
The development of efficient sensing technologies and the maturation of the Internet of Things (IoT) paradigm and related protocols have considerably fostered the expansion of sensor-based monitoring applications. A great number of those applications has been developed to monitor a set of information for better perception of the environment, with some of them being dedicated to identifying emergency situations. Current IoT-based emergency systems have limitations when considering the broader scope of smart cities, exploiting one or just a few monitoring variables or even allocating high computational burden to regular sensor nodes. In this context, we propose a distributed multi-tier emergency alerting system built around a number of sensor-based event detection units, providing real-time georeferenced information about the occurrence of critical events, while taking as input a configurable number of different scalar sensors and GPS data. The proposed system could then be used to detect and to deliver emergency alarms, which are computed based on the detected events, the previously known risk level of the affected areas and temporal information. Doing so, modularized and flexible perceptions of critical events are provided, according to the particularities of each considered smart city scenario. Besides implementing the proposed system in open-source electronic platforms, we also created a real-time visualization application to dynamically display emergency alarms on a map, demonstrating a feasible and useful application of the system as a supporting service. Therefore, this innovative approach and its corresponding physical implementation can bring valuable results for smart cities, potentially supporting the development of adaptive IoT-based emergency-aware applications.